Solar vapour generation is an efficient way of harvesting solar energy for the purification of polluted or saline water. However, water evaporation suffers from either inefficient utilization of solar energy or relies on complex and expensive light-concentration accessories. Here, we demonstrate a hierarchically nanostructured gel (HNG) based on polyvinyl alcohol (PVA) and polypyrrole (PPy) that serves as an independent solar vapour generator. The converted energy can be utilized in situ to power the vaporization of water contained in the molecular meshes of the PVA network, where water evaporation is facilitated by the skeleton of the hydrogel. A floating HNG sample evaporated water with a record high rate of 3.2 kg m h via 94% solar energy from 1 sun irradiation, and 18-23 litres of water per square metre of HNG was delivered daily when purifying brine water. These values were achievable due to the reduced latent heat of water evaporation in the molecular mesh under natural sunlight.
Graphene quantum dots (GQDs) represent a new class of quantum dots with unique properties. Doping GQDs with heteroatoms provides an attractive means of effectively tuning their intrinsic properties and exploiting new phenomena for advanced device applications. Herein we report a simple electrochemical approach to luminescent and electrocatalytically active nitrogen-doped GQDs (N-GQDs) with oxygen-rich functional groups. Unlike their N-free counterparts, the newly produced N-GQDs with a N/C atomic ratio of ca. 4.3% emit blue luminescence and possess an electrocatalytic activity comparable to that of a commercially available Pt/C catalyst for the oxygen reduction reaction (ORR) in an alkaline medium. In addition to their use as metal-free ORR catalysts in fuel cells, the superior luminescence characteristic of N-GQDs allows them to be used for biomedical imaging and other optoelectronic applications.
Graphene, the two-dimensional (2D) single-atom carbon sheet, has attracted tremendous research interest due to its large surface area, high carrier transport mobility, superior mechanical fl exibility and excellent thermal/chemical stability. [ 1 ] In particular, its high transport mobility [ 2 , 3 ] and environmentally friendly nature meet important requirements in the fabrication of optoelectronic devices. Apart from the conducting fi lm [ 4 , 5 ] and transparent anode [ 6 ] developed previously, its high mobility renders it a promising alternative as an electron-accepting material for photovoltaic device applications. However, the easy aggregation and the poor dispersion of 2D graphene sheets in common solvents limit its application in such devices. Although effort has been made to prepare solution-processable functionalized graphenes (SPFGs), [ 7 ] the non-uniform size and shape, on a scale of several hundred nanometers and even micrometers of SPFGs, remain big challenges for the fabrication of highperformance photovoltaic cells with active layer thicknesses of only nanometer scale.To facilitate the application of graphene in nanodevices and to effectively tune the bandgap of graphenes, a promising approach is to convert the 2D graphene sheets into 0D graphene quantum dots (GQDs). Apart from unique electron transportation properties, [ 8 ] new phenomena from GQDs associated with quantum confi nement and edge effects are expected. [ 9 ] QDs are important for various applications in bioimaging, [ 10 ] lasing, [ 11 ] photovoltaics [ 12 , 13 ] and light emitting diodes. [ 14 , 15 ] The development of new types of QD will allow control of the fundamental properties of materials through size/shape effects, which will further allow new devices to be developed with extraordinary properties and functions for numerous applications. Nowadays, the study of 2D graphene nanosheets [ 16 ] and 1D nanoribbons [ 17 ] has been on the high-speed track. However, the development of 0D GQDs remains inchoate and synthesis is only a recent effort. Pan and co-workers presented a hydrothermal method for cutting preoxidized graphene sheets into GQDs (approximately 10 nm in size) with blue emissions due to the large edge effect of GQDs. [ 18 ] Interestingly, graphene moieties containing certain conjugated carbon atoms have also been synthesized through solution chemistry by Müllen and Li, [ 19 , 20 ] which were demonstrated to be attractive for effi cient light harvesting in photovoltaics. [ 21 ] Herein, we report an alternative electrochemical approach for direct preparation of functional GQDs with a uniform size of 3-5 nm, which present a green luminescence and can be retained stably in water for several months without any changes. Polymer photovoltaic devices using GQDs as novel electronacceptor materials are also demonstrated. Although without device optimization in this primary study, a power conversion effi ciency of 1.28% was achieved. We expect our endeavor may further the advancement of less-developed graphenebased QDs.The ...
Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m h under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.
The ability of gecko lizards to adhere to a vertical solid surface comes from their remarkable feet with aligned microscopic elastic hairs. By using carbon nanotube arrays that are dominated by a straight body segment but with curly entangled top, we have created gecko-foot-mimetic dry adhesives that show macroscopic adhesive forces of approximately 100 newtons per square centimeter, almost 10 times that of a gecko foot, and a much stronger shear adhesion force than the normal adhesion force, to ensure strong binding along the shear direction and easy lifting in the normal direction. This anisotropic force distribution is due to the shear-induced alignments of the curly segments of the nanotubes. The mimetic adhesives can be alternatively binding-on and lifting-off over various substrates for simulating the walking of a living gecko.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.