In recent years, with the development of the Internet, the data on the network presents an outbreak trend. Big data mining aims at obtaining useful information through data processing, such as clustering, clarifying and so on. Clustering is an important branch of big data mining and it is popular because of its simplicity. A new trend for clients who lack of storage and computational resources is to outsource the data and clustering task to the public cloud platforms. However, as datasets used for clustering may contain some sensitive information (e.g., identity information, health information), simply outsourcing them to the cloud platforms can't protect the privacy. So clients tend to encrypt their databases before uploading to the cloud for clustering. In this paper, we focus on privacy protection and efficiency promotion with respect to k-means clustering, and we propose a new privacy-preserving multi-user outsourced k-means clustering algorithm which is based on locality sensitive hashing (LSH). In this algorithm, we use a Paillier cryptosystem encrypting databases, and combine LSH to prune off some unnecessary computations during the clustering. That is, we don't need to compute the Euclidean distances between each data record and each clustering center. Finally, the theoretical and experimental results show that our algorithm is more efficient than most existing privacy-preserving k-means clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.