It is prevailingly thought that estrogen signaling is not involved in development of estrogen receptor (ER)-negative breast cancer. However, there is evidence indicating that ovariectomy prevents the development of both ER-positive and -negative breast cancer, suggesting that estrogen signaling is involved in the development of ER-negative breast cancer. Previously, our laboratory cloned a variant of ER-α, ER-α36, and found that ER-α36 mediated non-genomic estrogen signaling and is highly expressed in ER-negative breast cancer cells. In this study, we found that ER-α36 was highly expressed in 10/12 cases of triple-negative breast cancer. We investigated the role of mitogenic estrogen signaling mediated by ER-α36 in malignant growth of triple-negative breast cancer MDA-MB-231 and MDA-MB-436 cells that express high levels of ER-α36 and found these cells were strongly responded to mitogenic estrogen signaling both in vitro and in vivo. Knock-down of ER-α36 expression in these cells using the shRNA method diminished their responsiveness to estrogen. ER-α36 physically interacted with the EGFR/Src/Shc complex and mediated estrogen-induced phosphorylation of EGFR and Src. EGFR signaling activated ER-α36 transcription through an AP1 site in the ER-α36 promoter and ER-α36 expression was able to stabilize EGFR protein. Our results thus demonstrated that ER-α36 mediates non-genomic estrogen signaling through the EGFR/Src/ERK signaling pathway in ER-negative breast cancer cells and suggested that a subset of ER-negative breast tumors that express ER-α36 retain responsiveness to mitogenic estrogen signaling.
Accumulating evidence suggested that an orphan G protein-coupled receptor (GPR)30, mediates nongenomic responses to estrogen. The present study was performed to investigate the molecular mechanisms underlying GPR30 function. We found that knockdown of GPR30 expression in breast cancer SK-BR-3 cells down-regulated the expression levels of estrogen receptor (ER)-alpha36, a variant of ER-alpha. Introduction of a GPR30 expression vector into GPR30 nonexpressing cells induced endogenous ER-alpha36 expression, and cotransfection assay demonstrated that GPR30 activated the promoter activity of ER-alpha36 via an activator protein 1 binding site. Both 17beta-estradiol (E2) and G1, a compound reported to be a selective GPR30 agonist, increased the phosphorylation levels of the MAPK/ERK1/2 in SK-BR-3 cells, which could be blocked by an anti-ER-alpha36-specific antibody against its ligand-binding domain. G1 induced activities mediated by ER-alpha36, such as transcription activation activity of a VP16-ER-alpha36 fusion protein and activation of the MAPK/ERK1/2 in ER-alpha36-expressing cells. ER-alpha36-expressing cells, but not the nonexpressing cells, displayed high-affinity, specific E2 and G1 binding, and E2- and G1-induced intracellular Ca(2+) mobilization only in ER-alpha36 expressing cells. Taken together, our results demonstrated that previously reported activities of GPR30 in response to estrogen were through its ability to induce ER-alpha36 expression. The selective G protein-coupled receptor (GPR)30 agonist G1 actually interacts with ER-alpha36. Thus, the ER-alpha variant ER-alpha36, not GPR30, is involved in nongenomic estrogen signaling.
It is prevailingly thought that the antiestrogens tamoxifen and ICI 182, 780 are competitive antagonists of the estrogen-binding site of the estrogen receptor-alpha (ER-α). However, a plethora of evidence demonstrated both antiestrogens exhibit agonist activities in different systems such as activation of the membrane-initiated signaling pathways. The mechanisms by which antiestrogens mediate estrogen-like activities have not been fully established. Previously, a variant of ER-α, EP–α36, has been cloned and showed to mediate membrane-initiated estrogen and antiestrogen signaling in cells only expressing ER-α36. Here, we investigated the molecular mechanisms underlying the antiestrogen signaling in ER-negative breast cancer MDA-MB-231 and MDA-MB-436 cells that express high levels of endogenous ER-α36. We found that the effects of both 4-hydoxytamoxifen (4-OHT) and ICI 182, 780 (ICI) exhibited a non-monotonic, or biphasic dose response curve; antiestrogens at low concentrations, elicited a mitogenic signaling pathway to stimulate cell proliferation while at high concentrations, antiestrogens inhibited cell growth. Antiestrogens at l nM induced the phosphorylation of the Src-Y416 residue, an event to activate Src, while at 5 µM induced Src-Y527 phosphorylation that inactivates Src. Antiestrogens at 1 nM also induced phosphorylation of the MAPK/ERK and activated the Cyclin D1 promoter activity through the Src/EGFR/STAT5 pathways but not at 5 µM. Knock-down of ER-α36 abrogated the biphasic antiestrogen signaling in these cells. Our results thus indicated that ER-α36 mediates biphasic antiestrogen signaling in the ER-negative breast cancer cells and Src functions as a switch of antiestrogen signaling dependent on concentrations of antiestrogens through the EGFR/STAT5 pathway.
The dietary isothiocyanates (ITCs) exhibit strong chemopreventive activities for a variety of neoplasms including breast cancer. However, the molecular mechanisms underlying ITC function in breast cancer cells have not been well established. Here, we found that phenethyl isothiocyanate (PEITC) acted more potently than the ‘pure’ anti-oestrogen ICI 182,780 to inhibit the growth of oestrogen receptor (ER)+ breast cancer MCF7 and H3396 cells and ER– MDA-MB-231 and SK-BR-3 cells. PEITC reduced the steady state levels of ER-α and its novel variant, ER-α36 in a dose-and time-dependent manner and inhibited oestrogen-induced activation of the mitogen activated protein kinase/ERK 1/2 signaling pathway. However, ICI 182,780 that is potent in destabilization of ER-α protein, failed to down-regulate ER-α36. Our results thus demonstrated that PEITC functions as a more potent ER-α‘disruptor’ than the well-known ICI 182,780 to abrogate ER-mediated mitogenic oestrogen signaling in breast cancer cells, which provides a molecular explanation for the strong growth inhibitory activity of ITCs in breast cancer cells, and a rational for further exploration of ITCs as chemopreventive agents for human mammary carcinogenesis.
Accumulating evidence supports the theory that breast cancer arises from a subpopulation of mammary stem/progenitor cell which posses the ability to self-renew. However, the involvement of estrogen signaling in regulation of breast cancer stem/progenitor cells has not been fully established, mainly because expression and function of ER-α in breast cancer stem cells remains controversial. Previously, our laboratory cloned a variant of ER-α, ER-α36, and found that ER-α36-mediated non-genomic estrogen signaling plays an important role in malignant growth of triple-negative breast cancer cells. In this study, we found that ER-α36 was highly expressed in ER-negative breast cancer SK-BR-3 cells and mediated non-genomic estrogen signaling such as activation of the MAPK/ERK signaling in these cells. Knock-down of ER-α36 expression in these cells using the shRNA method diminished their responsiveness to estrogen and significantly down-regulated HER2 expression. HER2 signaling activated ER-α36 transcription through an AP1 site in the ER-α36 promoter and ER-α36 physically interacted with HER2. We also found that ER-α36 is highly expressed in a subset of SK-BR-3 cells that was positive for ALDH1, a breast cancer stem cell marker, and knock-down of ER-α36 expression reduced the population of ALDH1 positive cells. Our results thus demonstrated that ER-α36 positively regulates HER2 expression and the population of ALDH1 positive breast cancer cells, and suggested that non-genomic estrogen signaling mediated by ER-α36 is involved in maintenance and regulation of breast cancer stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.