Embryo implantation is a crucial step in mammalian reproduction. However, little is known regarding the physiological roles of microRNAs in the regulation of embryo implantation. Here we show that a minimum uterine expression of miR-181 is essential for the onset of embryo implantation. Both transient and prolonged transgenic expression of miR-181 led to impaired implantation, which can be rescued by exogenous administration of leukemia inhibitory factor (LIF). Mechanistically, miR-181 is able to directly target LIF and downregulate LIF expression, thereby inhibiting embryo implantation. We also show that miR-181 expression is regulated by the transcriptional factor Emx2, and the Emx2-miR-181 axis plays an important role in regulating embryo implantation. Taken together, these results reveal a novel function of miR-181 in embryo implantation through the regulation of LIF, and also indicate a potential link between miR-181 dysregulation and human embryo implantation defects.
While Mek1/2 and Gsk3β inhibition (“2i”) supports the maintenance of murine embryonic stem cells (ESCs) in a homogenous naïve state, prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impairs developmental potential. Additionally, 2i fails to support derivation and culture of fully potent female ESCs. Here we find that mouse ESCs cultured in 2i/LIF supplemented with lipid-rich albumin (AlbuMAX) undergo pluripotency transition yet maintain genomic stability and full potency over long-term culture. Mechanistically, lipids in AlbuMAX impact intracellular metabolism including nucleotide biosynthesis, lipid biogenesis, and TCA cycle intermediates, with enhanced expression of DNMT3s that prevent DNA hypomethylation. Lipids induce a formative-like pluripotent state through direct stimulation of Erk2 phosphorylation, which also alleviates X chromosome loss in female ESCs. Importantly, both male and female “all-ESC” mice can be generated from de novo derived ESCs using AlbuMAX-based media. Our findings underscore the importance of lipids to pluripotency and link nutrient cues to genome integrity in early development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.