Solar energy is one of the most abundant renewable energy sources. For efficient utilization of solar energy, photovoltaic technology is regarded as the most important source. However, due to the intermittent and unstable characteristics of solar radiation, photoelectric conversion (PC) devices fail to meet the requirements of continuous power output. With the development of rechargeable electric energy storage systems (ESSs) (e.g., supercapacitors and batteries), the integration of a PC device and a rechargeable ESS has become a promising approach to solving this problem. The so‐called integrated photorechargeable ESSs which can directly store sunlight generated electricity in daylight and reversibly release it at night time, has a huge potential for future applications. This review summarizes the development of several types of mainstream integrated photorechargeable ESSs and introduces different working mechanisms for each photorechargeable ESS in detail. Several general perspectives on challenges and future development in the field are also provided.
In this work, TiB2 thin films have been employed as intermediate layer between absorber and back contact in Cu2ZnSnS4 (CZTS) thin film solar cells for interface optimization. It is found that the TiB2 intermediate layer can significantly inhibit the formation of MoS2 layer at absorber/back contact interface region, greatly reduces the series resistance and thereby increases the device efficiency by short current density (Jsc) and fill factor boost. However, introducing TiB2 degrades the crystal quality of absorber, which is detrimental to device performance especially Voc. The careful control of the thickness of TiB2 intermediate layer is required to ensure both MoS2 with minimal thickness and CZTS absorber with large grain microstructure according to the absorber growth process.
Electrocatalytic
reduction of CO2 to multicarbon products
is a potential strategy to solve the energy crisis while achieving
carbon neutrality. To improve the efficiency of multicarbon products
in Cu-based catalysts, optimizing the *CO adsorption and reducing
the energy barrier for carbon–carbon (C–C) coupling
are essential features. In this work, a strong local electric field
is obtained by regulating the arrangement of Cu nanoneedle arrays
(CuNNAs). CO2 reduction performance tests indicate that
an ordered nanoneedle array reaches a 59% Faraday efficiency for multicarbon
products (FEC2) at −1.2 V (vs RHE), compared to
a FEC2 of 20% for a disordered nanoneedle array (CuNNs).
As such, the very high and local electric fields achieved by an ordered
Cu nanoneedle array leads to the accumulation of K+ ions,
which benefit both *CO adsorption and C–C coupling. Our results
contribute to the design of highly efficient catalysts for multicarbon
products.
Alkaline metals doping is one of the approaches for achieving high efficiency Cu(In,Ga)Se2 (CIGS) solar cell. Recently, potassium doping helps to break the record efficiency of CIGS solar cell doped with sodium. In this paper, we have investigated how incorporation of potassium can influence the properties of Cu2ZnSnS4 (CZTS) thin film and the performance of resulting solar cell. Our results showed that K doping can enhance the (112) preferred orientation, increase the grain size and reduce the second phase ZnS of the CZTS thin films. After K doping, despite of some drop of Voc for CZTS thin film solar cells, the Rs is decreased and the Jsc is improved markedly, and the solar cell efficiency is boosted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.