We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.
A high yield (>36 wt %) method has been developed of preparing monolayered tungsten dichalcogenide (WS2) quantum dots (QDs) with lateral size ∼8-15 nm from multilayered WS2 flakes. The monolayered WS2 QDs are, like monolayered WS2 sheets, direct semiconductors despite the flake precursors being an indirect semiconductor. However, the QDs have a significantly larger direct transition energy (3.16 eV) compared to the sheets (2.1 eV) and enhanced photoluminescence (PL; quantum yield ∼4%) in the blue-green spectral region at room temperature. UV/vis measurements reveal a giant spin-valley coupling of the monolayered WS2 QDs at around 570 meV, which is larger than that of monolayered WS2 sheets (∼400 meV). This spin-valley coupling was further confirmed by PL as direct transitions from the conduction band minimum to split valence band energy levels, leading to multiple luminescence peaks centered at around 369 (3.36 eV) and 461 nm (2.69 eV, also contributed by a new defect level). The discovery of giant spin-valley coupling and the strong luminescence of the monolayered WS2 QDs make them potentially of interests for the applications in semiconductor-based spintronics, conceptual valley-based electronics, quantum information technology and optoelectronic devices. However, we also demonstrate that the fabricated monolayered WS2 QDs can be a nontoxic fluorescent label for high contrast bioimaging application.
Monolayered boron nitride (BN) quantum dots (QDs; lateral size ≈10 nm) are fabricated using a novel method. Unlike monolayered BN sheets, these BN QDs exhibit blue-green luminescence due to defects formed during preparation. This optical behavior adds significant functionality to a material that is already receiving much attention. It is further shown that the QDs are nontoxic to biological cells and well suited to bio-imaging.
Tackling global climate change and the energy crisis requires novel approaches in clean energy generation and efficient manufacturing. [1] Hydrogen (H 2 ) is one of the most popular clean energy sources, providing the highest energy outputThe hydrogen evolution reaction (HER) is an emerging key technology to provide clean, renewable energy. Current state-of-the-art catalysts still rely on expensive and rare noble metals, however, the relatively cheap and abundant transition metal dichalcogenides (TMDs) have emerged as exceptionally promising alternatives. Early studies in developing TMD-based catalysts laid the groundwork in understanding the fundamental catalytically active sites of different TMD phases, enabling a toolbox of physical, chemical, and electronic engineering strategies to improve the HER catalytic activity of TMDs. This report focuses on recent progress in improving the catalytic properties of TMDs toward highly efficient production of H 2 . Combining theoretical and experimental considerations, a summary of the progress to date is provided and a pathway forward for viable hydrogen evolution from TMD driven catalysis is concluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.