IntroductionTraditional chemical control methods pose a damaging effect on farmland ecology, and their long-term use has led to the development of pest resistance.MethodsHere, we analyzed the correlations and differences in the microbiome present in the plant and soil of sugarcane cultivars exhibiting different insect resistance to investigate the role played by microbiome in crop insect resistance. We evaluated the microbiome of stems, topsoil, rhizosphere soil, and striped borers obtained from infested stems, as well as soil chemical parameters.Results and DiscussionResults showed that microbiome diversity was higher in stems of insect-resistant plants, and contrast, lower in the soil of resistant plants, with fungi being more pronounced than bacteria. The microbiome in plant stems was almost entirely derived from the soil. The microbiome of insect-susceptible plants and surrounding soil tended to change towards that of insect-resistant plants after insect damage. Insects’ microbiome was mainly derived from plant stems and partly from the soil. Available potassium showed an extremely significant correlation with soil microbiome. This study validated the role played by the microbiome ecology of plant–soil-insect system in insect resistance and provided a pre-theoretical basis for crop resistance control.
The sugarcane woolly aphid is one of the main pests of sugarcane worldwide. The Pinellia pedatisecta agglutinin (PPA) gene has been demonstrated to function towards aphid resistance in other crops. In our study, in order to investigate the PPA function towards aphid control in sugarcane and its underlying mechanism, the PPA gene was overexpressed in a sugarcane Zhongzhe 1 (ZZ1) cultivar in independent transgenic sugarcane lines. It was confirmed in this study that PPA transgenic sugarcane can resist aphids via detecting the aphids’ development and tracing the survival number on PPA−transgenic sugarcane lines as well as PPA negative control lines. The mechanism of PPA lectin−associated defense against aphids was preliminarily explored. Stomatal patterning differences of sugarcane leaves between PPA−transgenic sugarcane lines and negative control lines were found. PPA overexpression led to an increase in stomata number and a decrease in stomata size that might have changed the transpiration status, which is critical for aphids’ passive feeding. Moreover, the antioxidant enzyme, sugar, tannin and chlorophyll content in sugarcane leaves before and after aphid infestation was determined. The results indicated that PPA overexpression in sugarcane resulted in an increase in antioxidant enzyme activity and tannin content, as well as a reduction in the decline of certain sugars. These together may improve sugarcane resistance against the sugarcane woolly aphid.
Soil microbiomes were important regulators of plant productivity. Here, we analyzed the correlations and differences in the microbiome present in the plant and soil of sugarcane cultivars exhibiting different insect resistance to investigate the role played by microbiome in crop insect resistance. We evaluated microbiome of stems, top soil, rhizosphere soil, and striped borers obtained from infested stems, as well as chemical parameters of the soil. Results showed that microbiome diversity was higher in stems of insect-resistant plants, and in contrast, lower in soil of resistant plants, with fungi being more pronounced than bacteria. The microbiome in plant stems was almost entirely derived from the soil. The microbiome of insect-susceptible plants and surrounding soil tended to change towards that of insect-resistant plants after insect damage. Insects’ microbiome was mainly derived from plant stems and partly from soil. Available potassium showed extremely significant correlation with microbiome in soil. This study validated the role played by the microbiome ecology of plant-soil-insect system in insect resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.