Record rainfall and severe flooding struck eastern China in the summer of 2020. The extreme summer rainfall occurred during the COVID-19 pandemic, which started in China in early 2020 and spread rapidly across the globe. By disrupting human activities, substantial reductions in anthropogenic emissions of greenhouse gases and aerosols might have affected regional precipitation in many ways. Here, we investigate such connections and show that the abrupt emissions reductions during the pandemic strengthened the summer atmospheric convection over eastern China, resulting in a positive sea level pressure anomaly over northwestern Pacific Ocean. The latter enhanced moisture convergence to eastern China and further intensified rainfall in that region. Modeling experiments show that the reduction in aerosols had a stronger impact on precipitation than the decrease of greenhouse gases did. We conclude that through abrupt emissions reductions, the COVID-19 pandemic contributed importantly to the 2020 extreme summer rainfall in eastern China.
Abstract. El Niño–Southern Oscillation (ENSO), a phenomenon of periodic changes in sea surface temperature in the equatorial central-eastern Pacific Ocean, is the strongest signal of interannual variability in the climate system with a quasi-period of 2–7 years. El Niño events have been shown to have important influences on meteorological conditions in China. In this study, the impacts of El Niño with different durations on aerosol concentrations and haze days during December–January–February (DJF) in China are quantitatively examined using the state-of-the-art Energy Exascale Earth System Model version 1 (E3SMv1). We find that PM2.5 concentrations are increased by 1–2 µg m−3 in northeastern and southern China and decreased by up to 2.4 µg m−3 in central-eastern China during El Niño events relative to the climatological means. Compared to long-duration (LD) El Niño events, El Niño with short duration (SD) but strong intensity causes northerly wind anomalies over central-eastern China, which is favorable for aerosol dispersion over this region. Moreover, the anomalous southeasterly winds weaken the wintertime prevailing northwesterly in northeastern China and facilitate aerosol transport from southern and southeast Asia, enhancing aerosol increase in northeastern China during SD El Niño events relative to LD El Niño events. In addition, the modulation effect on haze days by SD El Niño events is 2–3 times more than that by LD El Niño events in China. The aerosol variations during El Niño events are mainly controlled by anomalous aerosol accumulation/dispersion and transport due to changes in atmospheric circulation, while El Niño-induced precipitation change has little effect. The occurrence frequency of SD El Niño events has been increasing significantly in recent decades, especially after the 1940s, suggesting that El Niño with short duration has exerted an increasingly intense modulation on aerosol pollution in China over the past few decades.
With the rapid industrialization and urbanization, haze pollution has become more frequent and serious in China during the recent decades (Reddington et al., 2019). When severe haze hit China in the past, the maximum daily PM 2.5 (particulate matter less than 2.5 μm in diameter) concentration reached 500 μg m −3 in eastern China, which was 20 times higher than the healthy air quality criterion of World Health Organization (Li et al., 2018). PM 2.5 has various effects on environment and climate. PM 2.5 harms human health causing cardiovascular and respiratory disease and shortens life expectancy (Zhang et al., 2017). In China, about 1 million people died every year due to PM 2.5 exposure (Burnett et al., 2018;Cohen et al., 2017). On the other hand, through aerosol-radiation and aerosol-cloud interactions, PM 2.5 can directly and indirectly affect climate (Yang, Ren, et al., 2020;Yang et al., 2019). Moreover, high concentration of PM 2.5 in hazing conditions reduces atmospheric visibility and thus endangers road traffic and air transportation (Ding & Liu, 2014;Zhang et al., 2014). Therefore, it is imminent to study the causes of haze in China and the past and future changes of these factors.
Abstract. Dust is an important aerosol affecting air quality in China in the winter and spring seasons. Dust in China is potentially influenced by the interannual climate variability associated with El Niño. Here, the impacts of El Niño with different temporal and spatial types on dust pollution in boreal winter and spring in China and the potential mechanisms are investigated using a state-of-the-art Earth system model (E3SMv1). We find that the eastern Pacific (EP) and central Pacific (CP) El Niño both increase wintertime dust concentrations by 5–50 µg m−3 over central-eastern China. Due to a stronger wind and lower relative humidity, which favor dust emissions near sources, and a strengthened northwesterly and reduced precipitation, which are conducive to dust transport, dust concentrations during the CP El Niño are 5–20 µg m−3 higher in northern China than during the EP El Niño, although the changes are mostly insignificant. El Niño with a short duration (SD) increases boreal winter dust concentrations by 20–100 µg m−3 over northern China relative to the climatological mean, while there is a decrease of 5–50 µg m−3 during the long-duration (LD) El Niño, which is also related to the El Niño-induced changes in atmospheric circulation, precipitation, and relative humidity. In the following spring season, all types of El Niño events enhance dust over northern China, but only the increase during the LD El Niño is statistically significant, suggesting that the weaker intensity but longer duration of the LD El Niño events can significantly affect spring dust in China. Our results contribute to the current knowledge of the influence of El Niño on dust pollution, which has profound implications for air pollution control and dust storm prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.