Mueller matrix polarimetry is widely used in biomedical studies and applications, for it can provide abundant microstructural information about tissues. Recently, several methods have been proposed to decompose the Mueller matrix into groups of parameters related to specific optical properties which can be used to reveal the microstructural information of tissue samples more clearly and quantitatively. In this study, we thoroughly compare the differences among the parameters derived from the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT), which are two popular methods in tissue polarimetry studies and applications, while applying them on different tissue samples for both backscattering and transmission imaging. Based on the Mueller matrix data obtained using the setups, we carry out a comparative analysis of the parameters derived from both methods representing the same polarization properties, namely depolarization, linear retardance, fast axis orientation and diattenuation. IN particular, we propose several modified MMT parameters, whose abilities are also analyzed for revealing the information about the specific type of tissue samples. The results presented in this study evaluate the applicability of the original and modified MMT parameters, then give the suggestions for appropriate parameter selection in tissue polarimetry, which can be helpful for future biomedical and clinical applications.
The characterization and evaluation of skin tissue structures are crucial for dermatological applications. Recently, Mueller matrix polarimetry and second harmonic generation microscopy have been widely used in skin tissue imaging due to their unique advantages. However, the features of layered skin tissue structures are too complicated to use a single imaging modality for achieving a comprehensive evaluation. In this study, we propose a dual-modality imaging method combining Mueller matrix polarimetry and second harmonic generation microscopy for quantitative characterization of skin tissue structures. It is demonstrated that the dual-modality method can well divide the mouse tail skin tissue specimens’ images into three layers of stratum corneum, epidermis, and dermis. Then, to quantitatively analyze the structural features of different skin layers, the gray level co-occurrence matrix is adopted to provide various evaluating parameters after the image segmentations. Finally, to quantitatively measure the structural differences between damaged and normal skin areas, an index named Q-Health is defined based on cosine similarity and the gray-level co-occurrence matrix parameters of imaging results. The experiments confirm the effectiveness of the dual-modality imaging parameters for skin tissue structure discrimination and assessment. It shows the potential of the proposed method for dermatological practices and lays the foundation for further, in-depth evaluation of the health status of human skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.