Background: Runs of homozygosity (ROHs) are homozygous segments of the genome where the two haplotypes inherited from the parents are identical. The current availability of genotypes for a very large number of single nucleotide polymorphisms (SNPs) is leading to more accurate characterization of ROHs in the whole genome. Here, we investigated the occurrence and distribution of ROHs in 3,692 Large White pigs and compared estimates of inbreeding coefficients calculated based on ROHs (F ROH), homozygosity (F HOM), genomic relationship matrix (F GRM) and pedigree (F PED). Furthermore, we identified genomic regions with high ROH frequencies and annotated their candidate genes. Results: In total, 176,182 ROHs were identified from 3,569 animals, and all individuals displayed at least one ROH longer than 1 Mb. The ROHs identified were unevenly distributed on the autosomes. The highest and lowest coverages of Sus scrofa chromosomes (SSC) by ROH were on SSC14 and SSC13, respectively. The highest pairwise correlation among the different inbreeding coefficient estimates was 0.95 between F ROH_total and F HOM , while the lowest was − 0.083 between F GRM and F PED. The correlations between F PED and F ROH using four classes of ROH lengths ranged from 0.18 to 0.37 and increased with increasing ROH length, except for ROH > 10 Mb. Twelve ROH islands were located on four chromosomes (SSC1, 4, 6 and 14). These ROH islands harboured genes associated with reproduction, muscular development, fat deposition and adaptation, such as SIRT1, MYPN, SETDB1 and PSMD4. Conclusion: F ROH can be used to accurately assess individual inbreeding levels compared to other inbreeding coefficient estimators. In the absence of pedigree records, F ROH can provide an alternative to inbreeding estimates. Our findings can be used not only to effectively increase the response to selection by appropriately managing the rate of inbreeding and minimizing the negative effects of inbreeding depression but also to help detect genomic regions with an effect on traits under selection.
Background A run of homozygosity (ROH) is a consecutive tract of homozygous genotypes in an individual that indicates it has inherited the same ancestral haplotype from both parents. Genomic inbreeding can be quantified based on ROH. Genomic regions enriched with ROH may be indicative of selection sweeps and are known as ROH islands. We carried out ROH analyses in five Chinese indigenous sheep breeds; Altay sheep (n = 50 individuals), Large-tailed Han sheep (n = 50), Hulun Buir sheep (n = 150), Short-tailed grassland sheep (n = 150), and Tibetan sheep (n = 50), using genotypes from an Ovine Infinium HD SNP BeadChip. Results A total of 18,288 ROH were identified. The average number of ROH per individual across the five sheep breeds ranged from 39 (Hulun Buir sheep) to 78 (Large-tailed Han sheep) and the average length of ROH ranged from 0.929 Mb (Hulun Buir sheep) to 2.544 Mb (Large-tailed Han sheep). The effective population size (Ne) of Altay sheep, Large-tailed Han sheep, Hulun Buir sheep, Short-tailed grassland sheep and Tibetan sheep were estimated to be 81, 78, 253, 238 and 70 five generations ago. The highest ROH-based inbreeding estimate (FROH) was 0.0808 in Large-tailed Han sheep, whereas the lowest FROH was 0.0148 in Hulun Buir sheep. Furthermore, the highest proportion of long ROH fragments (> 5 Mb) was observed in the Large-tailed Han sheep breed which indicated recent inbreeding. In total, 49 ROH islands (the top 0.1% of the SNPs most commonly observed in ROH) were identified in the five sheep breeds. Three ROH islands were common to all the five sheep breeds, and were located on OAR2: 12.2–12.3 Mb, OAR12: 78.4–79.1 Mb and OAR13: 53.0–53.6 Mb. Three breed-specific ROH islands were observed in Altay sheep (OAR15: 3.4–3.8 Mb), Large-tailed Han sheep (ORA17: 53.5–53.8 Mb) and Tibetan sheep (ORA5:19.8–20.2 Mb). Collectively, the ROH islands harbored 78 unique genes, including 19 genes that have been documented as having associations with tail types, adaptation, growth, body size, reproduction or immune response. Conclusion Different ROH patterns were observed in five Chinese indigenous sheep breeds, which reflected their different population histories. Large-tailed Han sheep had the highest genomic inbreeding coefficients and the highest proportion of long ROH fragments indicating recent inbreeding. Candidate genes in ROH islands could be used to illustrate the genetic characteristics of these five sheep breeds. Our findings contribute to the understanding of genetic diversity and population demography, and help design and implement breeding and conservation strategies for Chinese sheep.
Total number born (TNB), number of stillborn (NSB), and gestation length (GL) are economically important traits in pig production, and disentangling the molecular mechanisms associated with traits can provide valuable insights into their genetic structure. Genotype imputation can be used as a practical tool to improve the marker density of single-nucleotide polymorphism (SNP) chips based on sequence data, thereby dramatically improving the power of genome-wide association studies (GWAS). In this study, we applied Beagle software to impute the 50 K chip data to the whole-genome sequencing (WGS) data with average imputation accuracy (R2) of 0.876. The target pigs, 2655 Large White pigs introduced from Canadian and French lines, were genotyped by a GeneSeek Porcine 50K chip. The 30 Large White reference pigs were the key ancestral individuals sequenced by whole-genome resequencing. To avoid population stratification, we identified genetic variants associated with reproductive traits by performing within-population GWAS and cross-population meta-analyses with data before and after imputation. Finally, several genes were detected and regarded as potential candidate genes for each of the traits: for the TNB trait: NOTCH2, KLF3, PLXDC2, NDUFV1, TLR10, CDC14A, EPC2, ORC4, ACVR2A, and GSC; for the NSB trait: NUB1, TGFBR3, ZDHHC14, FGF14, BAIAP2L1, EVI5, TAF1B, and BCAR3; for the GL trait: PPP2R2B, AMBP, MALRD1, HOXA11, and BICC1. In conclusion, expanding the size of the reference population and finding an optimal imputation strategy to ensure that more loci are obtained for GWAS under high imputation accuracy will contribute to the identification of causal mutations in pig breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.