All printing of organic photovoltaics (OPVs) including the top electrode is highly desirable for achieving cost‐effective, high‐throughput, and large‐area photovoltaic manufacturing. Here, the printing of a low‐melting‐point alloy as top electrodes in OPVs via blade coating is investigated. The Field's metal (FM) with the melting point of 62 °C is adopted for the top electrodes, because FM can be printed under moderate temperatures without harming the active layers while remaining solid state under solar irradiation. The correlations between the processing parameters and properties of the blade‐coated electrodes are elucidated. OPVs based on the D18:Y6 active layer and blade‐coated FM electrodes achieve a highest power conversion efficiency of 17.28%. The OPVs with FM‐electrode demonstrate much higher thermal stability than that of the Ag‐electrode devices. All‐printed OPVs, in which the FM electrode is blade coated and the other layers are prepared by flexible micro‐comb printing, exhibit an efficiency of 16.07%. The results represent the records of evaporation‐free and all‐printed OPVs, demonstrating that printing FM as OPV electrodes is a cost‐effective and time‐saving strategy to substitute the vacuum‐evaporated metals, as well as a feasible route toward high‐performance all‐printed OPVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.