A novel solar energy storage heating radiator (SESHR) prototype filled with low-temperature phase change material (PCM) has been developed to accommodate the urgent demand in thermal storage and the fluctuation in renewable energy utilization. This equipment integrated by several independent heat storage units (HSUs) and water and paraffin wax was used as a heat transfer fluid and an energy storage material, respectively. The experimental test platform for low-temperature SESHR was designed and established. The total storage/dissipation time, average storage/dissipation capacity, and the rate and overall thermal efficiency were investigated under different operating conditions. Experimental results showed that a higher temperature difference between the heat source and the melting point of the PCM could significantly improve the heat storage capacity and rate. The heat dissipation rate of the SESHR could be controlled by adjusting the opening ratio of the air convective channel. The average storage rate of the SESHR with 2#PCM reached 1106 W at a heat source temperature of 85 °C, and the average heat dissipation rate reached 80.7 W at 100% opening ratio when the SESHR was filled with 1#PCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.