Truth inference can help solve some difficult problems of data integration in crowdsourcing. Crowdsourced workers are not experts and their labeling ability varies greatly; therefore, in practical applications, it is difficult to determine whether the labels collected from a crowdsourcing platform are correct. This paper proposes a novel algorithm, called truth inference based on label confidence clustering (TILCC), to improve the quality of integrated labels for the single-choice classification problem in crowdsourcing labeling tasks. We obtain the label confidence via worker reliability, which is calculated from multiple noise labels using a truth discovery method, and then we generate the clustering features and use the K-means algorithm to cluster all the tasks into
K
different clusters. Each cluster corresponds to a specific class, and the tasks in the cluster are assigned a label. Compared with the performances of six state-of-the-art methods, MV, ZenCrowd, PM, CATD, GLAD, and GTIC, on 12 randomly selected real-world datasets, the performance of our algorithm showed many advantages: no need to set complex parameters, faster running speed, and significantly higher accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.