In this work, a super-resolution approach based on generative adversary network (GAN) was used to interpolate (up-sample) ultrasound radio-frequency (RF) echo data along the lateral (perpendicular to the acoustic beam direction) direction before motion estimation. Our primary objective was to investigate the feasibility of using a GAN-based super-solution approach to improve lateral resolution in the RF data as a means of improving strain image quality in quasi-static ultrasound strain elastography (QUSE). Unlike natural scene photographs, axial (parallel to the acoustic beam direction) resolution is significantly higher than that of lateral resolution in ultrasound RF data. To better handle RF data, we first modified a superresolution generative adversary network (SRGAN) model developed by the computer vision community. We named the modified SRGAN model as super-resolution radio-frequency neural network (SRRFNN) model. Our preliminary experiments showed that, compared with axial strain elastograms obtained using the original ultrasound RF data, axial strain elastograms using ultrasound RF data up-sampled by the proposed SRRFNN model were improved. Based on the Wilcoxon rank-sum tests, such improvements were statistically significant (p < 0.05) for large deformation (3-5%). Also, the proposed SRRFNN model outperformed a commonly-used method (i.e. bi-cubic interpolation used in MATLAB [Mathworks Inc., MA, USA]) in terms of improving axial strain elastograms. We concluded that applying the proposed (SRRFNN) model was feasible and good-quality strain elastography data could be obtained in in vivo tumor-bearing breast ultrasound data. INDEX TERMS Generative adversarial network, motion tracking, super-resolution, quasi-static ultrasound strain elastography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.