In order to construct virtual land environment for virtual test, we propose a construction method of virtual land environment using multi-satellite remote sensing data, the key step of which is accurate recognition of ground object. In this paper, a method of ground object recognition based on hyperspectral image (HSI) was proposed, i.e., a HSI classification method based on information measure and convolutional neural networks (CNN) combined with spatial-spectral information. Firstly, the most important three spectra of the hyperspectral image was selected based on information measure. Specifically, the entropy and color-matching functions were applied to determine the candidate spectra sets from all the spectra of the hyperspectral image. Then three spectra with the largest amount of information were selected through the minimum mutual information. Through the above two steps, the dimensionality reduction for hyperspectral images was effectively achieved. Based on the three selected spectra, the CNN network input combined with the spatial-spectral information was designed. Two input strategies were designed: (1) The patch surrounding the pixel to be classified was directly intercepted from the grayscale images of the three selected spectra. (2) In order to highlight the effect of the spectrum of the pixel to be classified, all the spectral components of this pixel were superimposed on the patch obtained by the previous strategy. As a result, a new patch with more prominent spectral components of the pixel to be classified was obtained. Using the two public hyperspectral datasets, Salinas and Pavia Center, the experiments of on both parameter selection and classification performance were performed to verify that the proposed methods had better classification performance.
Superpixel segmentation (SS) methods have been proven to be feasible in improving the performance of hybrid algorithms on hyperspectral images (HSIs). In this paper, a superpixel segmentation algorithm based on the information measures with color histogram driving (IM-CHD) was proposed. First, Shannon entropy was applied to measure the image information and preliminarily select spectral bands. Mutual information (MI) is derived from the concept of entropy and measures the statistical dependence between two random variables. Also, MI can effectively identify the redundant spectral bands. Therefore, in this paper, both MI and color matching functions (CMF) were used to select the most useful spectral bands. Second, the selected spectral bands were combined into a false color image containing the main spectral information. A local optimization algorithm named “hill climbing” was used to achieve the superpixel segmentation. Finally, parameter selection experiments and comparative experiments were performed on two hyperspectral data sets. The experimental results showed that the IM-CHD method was more efficient and accurate than other state-of-the-art methods.
With the exponential growth in the amount of available data, traditional meteorological data processing algorithms have become overwhelmed. The application of artificial intelligence in simultaneous prediction of multi-parameter meteorological data has attracted much attention. However, existing single-task network models are generally limited by the data correlation dependence problem. In this paper, we use a priori knowledge for network design and propose a multitask model based on an asymmetric sharing mechanism, which effectively solves the correlation dependence problem in multi-parameter meteorological data prediction and achieves simultaneous prediction of multiple meteorological parameters with complex correlations for the first time. The performance of the multitask model depends largely on the relative weights among the task losses, and manually adjusting these weights is a difficult and expensive process, which makes it difficult for multitask learning to achieve the expected results in practice. In this paper, we propose an improved multitask loss processing method based on the assumptions of homoscedasticity uncertainty and the Laplace loss distribution and validate it using the German Jena dataset. The results show that the method can automatically balance the losses of each subtask and has better performance and robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.