Background: Gastric cancer has been ranked the third leading cause of cancer death worldwide. Its detection at the early stage is difficult because patients mostly experience vague and non-specific symptoms in the early stages. Methods: The RNA-seq datasets of both gastric cancer and normal samples were considered and processed. The obtained differentially expressed genes were then subjected to functional enrichment analysis and pathway analysis. An implicit atomistic molecular dynamics simulation was executed on the selected protein receptor for 50 ns. The electrostatics, surface potential, radius of gyration, and macromolecular energy frustration landscape were computed. Results: We obtained a large number of DEGs; most of them were down-regulated, while few were up-regulated. A DAVID analysis showed that most of the genes were prominent in the KEGG and Reactome pathways. The most prominent GAD disease classes were cancer, metabolic, chemdependency, and infection. After an implicit atomistic molecular dynamics simulation, we observed that DLC1 is electrostatically optimized, stable, and has a reliable energy frustration landscape, with only a few maximum energy frustrations in the loop regions. It has a good functional and binding affinity mechanism. Conclusions: Our study revealed that DLC1 could be used as a potential druggable target for specific subsets of gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.