BackgroundPatients with chronic kidney disease (CKD) have a high prevalence of cardiovascular diseases, which often lead to physical inactivity that correlates with CKD exacerbation. The benefits of regular exercise to cardiovascular health have been well established in healthy population and highly suggestive in patients with CKD. To further strengthen the evidence base for the management of CKD, this meta-analysis was performed to systematically evaluate the effects of exercise therapy on renal function, blood pressure, blood lipid and body mass index (BMI) in non-dialysis CKD patients.MethodsThis meta-analysis was conducted following a previous protocol. Randomized controlled trials (RCTs) examining the effects of exercise therapy in non-dialysis CKD patients were searched in Pubmed, Embase, Cochrane Library, and three major Chinese biomedical databases (CNKI, WANGFANG and VIP) from their start date to October 30th, 2018. The Cochrane systematic review methods were applied for quality assessment and data extraction, and Revman version 5.3 was used for systematic review and meta-analysis.Results13 RCTs, representing 421 patients with non-dialysis CKD, were included in this meta-analysis. Compared to the controls, exercise therapy brought an increase in eGFR (MD = 2.62, 95% CI:0.42 to 4.82, P = 0.02, I2 = 22%), and decreases in systolic blood pressure (SBP) (MD = -5.61, 95% CI:-8.99 to − 2.23, P = 0.001, I2 = 44%), diastolic blood pressure (DBP) (MD = -2.87, 95% CI:-3.65 to − 2.08, P < 0.00001, I2 = 16%) and BMI (MD = -1.32, 95% CI:-2.39 to − 0.25, P = 0.02, I2 = 0%) in non-dialysis CKD patients. Exercise therapy of short-term (< 3 months) decreased triglyceride (TG) level (P = 0.0006). However, exercise therapy did not significantly affect serum creatinine (SCr), total cholesterol (TC), high density lipoprotein (HDL) or low density lipoprotein (LDL) in non-dialysis CKD patients.ConclusionExercise therapy could benefit non-dialysis CKD patients by increasing eGFR while reducing SBP, DBP and BMI. Additionally, short-term intervention of exercise could decrease TG.
Aims The role of probiotics in the management of diabetic kidney disease (DKD) has been shown. Several current trials are investigating the effect of probiotics, which are widely used to modulate biomarkers of renal function, glucose, lipids, inflammation and oxidative stress in patients with DKD. However, their findings are controversial. This study aimed to systematically evaluate the impact of probiotics on patients with DKD via meta-analysis. Methods PubMed, The Cochrane Library, Web of Science, Scopus, Embase, China National Knowledge Infrastructure, Chinese Wanfang Database and Chinese VIP Database were searched for relevant studies from the establishment of these databases to September 2021. The pooled results evaluated the impact of probiotics on renal function, glucose, lipids, inflammation and oxidative stress indicators in patients with DKD. Additionally, subgroup analysis was performed based on intervention duration, probiotic dose and probiotic consumption patterns, respectively. Results Ten trials that included 552 participants were identified for analysis. Compared with the controls, probiotics significantly decreased serum creatinine (Scr) [WMD = −0.17 mg/dL; 95%CI = −0.29, −0.05; p = 0.004], blood urea nitrogen (BUN) [WMD = −1.36 mg/dL; 95%CI = −2.20, −0.52; p = 0.001], cystatin C (Cys C) [WMD = −29.50 ng/mL; 95%CI = −32.82, −26.18; p < 0.00001], urinary albumin/creatinine ratio (UACR) [WMD = −16.05 mg/g; 95%CI = −27.12, −4.99; p = 0.004] and natrium (Na) [WMD = −0.94 mmol/L; 95%CI = −1.82, −0.05; p = 0.04] in patients with DKD. Enhanced glycemic control was observed in patients with DKD receiving probiotics compared with controls, as demonstrated by reduced levels of fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), homeostasis model of assessment-estimated insulin resistance (HOMA-IR), and increased quantitative insulin sensitivity check index (QUICKI). Probiotics affected lipid metabolism parameters with decreasing triglycerides (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c) levels in patients with DKD. Probiotics could also could improve inflammation and oxidative stress by decreasing high-sensitivity C-reactive protein (hs-CRP), plasma malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione (GSH) and nitric oxide (NO). Additionally, subgroup analysis showed that those who received multiple species probiotics had a statistically significant difference in BUN, FPG, HOMA-IR, high-density lipoprotein cholesterol (HDL-c), MDA, TAC, and NO. Meanwhile, Scr, LDL-c, HDL-c, MDA, and TAC were ameliorated when the intervention duration was more than eight weeks and BUN, FPG, HOMA-IR, and MDA were improved when the probiotic dose was greater than four billion CFU/day. Conclusions ...
Aims: The early diagnosis of kidney injury in type 2 diabetes (T2DM) is important to prevent the long-term damaging effects of kidney loss and is decisive for patient outcomes. This study was designed to investigate Sirtuin2 (SIRT2) expression and evaluate the performance of SIRT2 in T2DM patients. Methods: A total of 163 T2DM patients were divided into three groups according to their urinary albumin/creatinine ratio (UACR): normal to mildly increased (A1 group, UACR < 30 mg/g, n = 58), moderately increased (A2 group, UACR 30-300 mg/g, n = 52), and severely increased (A3 group, UACR > 300 mg/g, n = 53), with healthy individuals (NC group, n = 40) as controls. SIRT2 levels in serum and urine were measured using an enzyme-linked immunosorbent assay (ELISA). Immunoturbidimetry was employed to detect biomarkers of kidney injury such as urinary albumin, α1-microglobulin, β2-microglobulin, and retinol-binding protein. After urinary creatinine correction, they were expressed as USCR, UACR, UαCR, UβCR, and URCR, respectively. Results: We found USCR levels in the A3 group were highest than those in NC and A1 groups, and USCR levels above the median level were linked to higher levels of UACR, UαCR, UβCR, and URCR. However, no significant difference existed in serum SIRT2 level among all groups. Spearman correlation analysis revealed that USCR was positively correlated with UACR, UαCR, UβCR, and URCR and was negatively linked to eGFR. ROC curve demonstrated that USCR had high sensitivity or specificity for distinguishing glomerular and tubular injury in T2DM patients. Logistic ordered multi-classification regression analysis confirmed that USCR remained a risk factor for severity of albuminuria in T2DM patients after adjustment for confounding factors. Conclusion: Urinary SIRT2 is not only an effective indicator for glomerular and tubular injury in T2DM patients but also an important risk factor for severity of albuminuria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.