As chloroquine (CHQ) is part of the Dutch Centre for Infectious Disease Control coronavirus disease 2019 experimental treatment guideline, pediatric dosing guidelines are needed. Recent pediatric data suggest that existing World Health Organization (WHO) dosing guidelines for children with malaria are suboptimal. The aim of our study was to establish best-evidence to inform pediatric CHQ doses for children infected with COVID-19. A previously developed physiologically-based pharmacokinetic (PBPK) model for CHQ was used to simulate exposure in adults and children and verified against published pharmacokinetic data. The COVID-19 recommended adult dosage regimen of 44 mg/kg total was tested in adults and children to evaluate the extent of variation in exposure. Based on differences in area under the concentration-time curve from zero to 70 hours (AUC 0-70h ) the optimal CHQ dose was determined in children of different ages compared with adults. Revised doses were re-introduced into the model to verify that overall CHQ exposure in each age band was within 5% of the predicted adult value. Simulations showed differences in drug exposure in children of different ages and adults when the same body-weight based dose is given. As such, we propose the following total cumulative doses: 35 mg/kg (CHQ base) for children 0-1 month, 47 mg/kg for 1-6 months, 55 mg/kg for 6 months-12 years, and 44 mg/kg for adolescents and adults, not to exceed 3,300 mg in any patient. Our study supports age-adjusted CHQ dosing in children with COVID-19 in order to avoid suboptimal or toxic doses. The knowledge-driven, model-informed dose selection paradigm can serve as a science-based alternative to recommend pediatric dosing when pediatric clinical trial data is absent.With coronavirus disease 2019 (COVID-19) spreading rapidly across the globe, effective drug treatment is desperately needed. Based on Chinese population data, < 1% of the infected cases were children below the age of 10 years and clinical symptoms in these patients were milder compared with adults. 1 However, it is unknown how such numbers will evolve when a higher percentage of the entire world population with diverse ethnic and socioeconomical backgrounds is infected.
Background and Objective More than half of all drugs are still prescribed off-label to children. Pharmacokinetic (PK) data are needed to support off-label dosing, however for many drugs such data are either sparse or not representative. Physiologicallybased pharmacokinetic (PBPK) models are increasingly used to study PK and guide dosing decisions. Building compound models to study PK requires expertise and is time-consuming. Therefore, in this paper, we studied the feasibility of predicting pediatric exposure by pragmatically combining existing compound models, developed e.g. for studies in adults, with a pediatric and preterm physiology model. Methods Seven drugs, with various PK characteristics, were selected (meropenem, ceftazidime, azithromycin, propofol, midazolam, lorazepam, and caffeine) as a proof of concept. Simcyp ® v20 was used to predict exposure in adults, children, and (pre)term neonates, by combining an existing compound model with relevant virtual physiology models. Predictive performance was evaluated by calculating the ratios of predicted-to-observed PK parameter values (0.5-to 2-fold acceptance range) and by visual predictive checks with prediction error values. Results Overall, model predicted PK in infants, children and adolescents capture clinical data. Confidence in PBPK model performance was therefore considered high. Predictive performance tends to decrease when predicting PK in the (pre)term neonatal population. Conclusion Pragmatic PBPK modeling in pediatrics, based on compound models verified with adult data, is feasible. A thorough understanding of the model assumptions and limitations is required, before model-informed doses can be recommended for clinical use.Rick Greupink and Saskia N. de Wildt: Joint last author.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.