The currently available arsenal of anticancer modalities includes many DNA damaging agents that can kill malignant cells. However, efficient DNA repair mechanisms protect both healthy and cancer cells against the effects of treatment and contribute to the development of drug resistance. Therefore, anti-cancer treatments based on inflicting DNA damage can benefit from inhibition of DNA repair. Hyperthermia – treatment at elevated temperature – considerably affects DNA repair, among other cellular processes, and can thus sensitize (cancer) cells to DNA damaging agents. This effect has been known and clinically applied for many decades, but how heat inhibits DNA repair and which pathways are targeted has not been fully elucidated. In this review we attempt to summarize the known effects of hyperthermia on DNA repair pathways relevant in clinical treatment of cancer. Furthermore, we outline the relationships between the effects of heat on DNA repair and sensitization of cells to various DNA damaging agents.
Langerhans cells (LCs) lining the stratified epithelia and mucosal tissues are the first antigen presenting cells to encounter invading pathogens, such as viruses, bacteria and fungi. Fungal infections form a health threat especially in immuno-compromised individuals. LCs express C-type lectin Langerin that has specificity for mannose, fucose and GlcNAc structures. Little is known about the role of human Langerin in fungal infections. Our data show that Langerin interacts with both mannan and β-glucan structures, common cell-wall carbohydrate structures of fungi. We have screened a large panel of fungi for recognition by human Langerin and, strikingly, we observed strong binding of Langerin to a variety of Candida and Saccharomyces species and Malassezia furfur, but very weak binding was observed to Cryptococcus gattii and Cryptococcus neoformans. Notably, Langerin is the primary fungal receptor on LCs, since the interaction of LCs with the different fungi was blocked by antibodies against Langerin. Langerin recognizes both mannose and β-glucans present on fungal cell walls and our data demonstrate that Langerin is the major fungal pathogen receptor on human LCs that recognizes pathogenic and commensal fungi. Together these data may provide more insight in the role of LCs in fungal infections.
Purpose Invariant NKT cells (iNKT) are innate-like CD1d-restricted T cells with immunoregulatory activity in diseases including cancer. iNKT from advanced cancer patients can have reversible defects including IFN-gamma production, and iNKT IFN-gamma production may stratify for survival. Previous clinical trials using iNKT cell activating ligand alpha-galactosylceramide have shown responses. Therefore, a phase 1 clinical trial was performed of autologous in vitro expanded iNKT cells in stage IIIB-IV melanoma. Experimental Design Residual iNKT cells (<0.05% of patient PBMC) were purified from autologous leukapheresis product using an antibody against the iNKT cell receptor linked to magnetic microbeads. iNKT cells were then expanded with CD3 mAb and IL-2 in vitro to obtain up to ~109 cells. Results Expanded iNKT cells produced IFN-gamma, but limited or undetectable IL-4 or IL-10. Three iNKT infusions each were completed on 9 patients, and produced only grade 1–2 toxicities. The 4th patient onward received systemic GM-CSF with their second and third infusions. Increased numbers of iNKT cells were seen in PBMC after some infusions, particularly when GM-CSF was also given. IFN-gamma responses to alpha-galactosylceramide were increased in PBMC from some patients after infusions, and DTH responses to Candida increased in 5/8 evaluated patients. Three patients have died, three were progression-free at 53, 60 and 65 months, three received further treatment and were alive at 61, 81, and 85 months. There was no clear correlation between outcome and immune parameters. Conclusions Autologous in vitro expanded iNKT cells are a feasible and safe therapy, producing Th1-like responses with anti-tumor potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.