Risk assessment of congestive heart failure (CHF) is essential for detection, especially helping patients make informed decisions about medications, devices, transplantation, and end-of-life care. The majority of studies have focused on disease detection between CHF patients and normal subjects using short-/long-term heart rate variability (HRV) measures but not much on quantification. We downloaded 116 nominal 24-hour RR interval records from the MIT/BIH database, including 72 normal people and 44 CHF patients. These records were analyzed under a 4-level risk assessment model: no risk (normal people, N), mild risk (patients with New York Heart Association (NYHA) class I-II, P1), moderate risk (patients with NYHA III, P2), and severe risk (patients with NYHA III-IV, P3). A novel multistage classification approach is proposed for risk assessment and rating CHF using the non-equilibrium decision-tree–based support vector machine classifier. We propose dynamic indices of HRV to capture the dynamics of 5-minute short term HRV measurements for quantifying autonomic activity changes of CHF. We extracted 54 classical measures and 126 dynamic indices and selected from these using backward elimination to detect and quantify CHF patients. Experimental results show that the multistage risk assessment model can realize CHF detection and quantification analysis with total accuracy of 96.61%. The multistage model provides a powerful predictor between predicted and actual ratings, and it could serve as a clinically meaningful outcome providing an early assessment and a prognostic marker for CHF patients.
Abstract:Obstructive sleep apnea (OSA) is a common sleep disorder that often associates with reduced heart rate variability (HRV) indicating autonomic dysfunction. HRV is mainly composed of high frequency components attributed to parasympathetic activity and low frequency components attributed to sympathetic activity. Although, time domain and frequency domain features of HRV have been used to sleep studies, the complex interaction between nonlinear independent frequency components with OSA is less known. This study included 30 electrocardiogram recordings (20 OSA patient recording and 10 healthy subjects) with apnea or normal label in 1-min segment. All segments were divided into three groups: N-N group (normal segments of normal subjects), P-N group (normal segments of OSA subjects) and P-OSA group (apnea segments of OSA subjects). Frequency domain indices and interaction indices were extracted from segmented RR intervals. Frequency domain indices included nuLF, nuHF, and LF/HF ratio; interaction indices included mutual information (MI) and transfer entropy (TE (H→L) and TE (L→H)). Our results demonstrated that LF/HF ratio was significant higher in P-OSA group than N-N group and P-N group. MI was significantly larger in P-OSA group than P-N group. TE (H→L) and TE (L→H) showed a significant decrease in P-OSA group, compared to P-N group and N-N group. TE (H→L) were significantly negative correlation with LF/HF ratio in P-N group (r = −0.789, p = 0.000) and P-OSA group (r = −0.661, p = 0.002). Our results indicated that MI and TE is powerful tools to evaluate sympathovagal modulation in OSA. Moreover, sympathovagal modulation is more imbalance in OSA patients while suffering from apnea event compared to free event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.