a b s t r a c tThis study was conducted to investigate the capability of pyrene-degrading bacterium Ochrobactrum sp. PW and ryegrass (Lolium multiflorum) grown alone and in combination on the degradation of pyrene in soil. After 60 days of ryegrass growth, plant biomass, pyrene-degrading microbial mass, soil enzyme activity (catalase activity and polyphenol oxidase activity) and residual concentration of pyrene in soils were determined. Higher dissipation rates were observed in PW inoculation treatments: ryegrassþ PW rhizosphere soil (RP-r) and ryegrassþ PW non-rhizosphere soil (RP-nr), than planting of ryegrass alone, rhizosphere (R-r) or non-rhizosphere (R-nr). The inoculation with PW significantly (p o0.05) increased the dry weight of ryegrass root and shoot, nearly 2.8 and 3.3 times higher than ryegrass treatment. The pyrene-degrading microbial mass indicated that a much larger mass of bacteria, actinobacteria were present in RP treatment. The catalase activity in all different treatments were significantly (p o 0.05) higher than in with treatment R-nr, and the polyphenol oxidase activity was also significantly (p o 0.05) increased by inoculation with PW, leading to enhanced mineralization of pyrene from soil. Our results suggest that adding of PAHs-degrading bacteria to soil can enhance remediation of PAHs contaminated soil, while improving plant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.