Outbreaks of diarrhea in newborn piglets without detection of transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), have been recorded in a pig farm in southern China since February 2017. Isolation and propagation of the pathogen in cell culture resulted in discovery of a novel swine enteric alphacoronavirus (tentatively named SeACoV) related to the bat coronavirus HKU2 identified in the same region a decade ago. Specific fluorescence signal was detected in Vero cells infected with SeACoV by using a positive sow serum collected in the same farm, but not by using TGEV-, PEDV- or PDCoV-specific antibody. Electron microscopy observation demonstrated that the virus particle with surface projections was 100-120nm in diameter. Complete genomic sequencing and analyses of SeACoV indicated that the extreme amino-terminal domain of the SeACoV spike (S) glycoprotein structurally similar to the domain 0 of the alphacoronavirus NL63, whereas the rest part of S structurally resembles domains B to D of the betacoronavirus. The SeACoV-S domain 0 associated with enteric tropism had an extremely high variability, harboring 75-amino-acid (aa) substitutions and a 2-aa insertion, compared to that of HKU2, which is likely responsible for the extended host range or cross-species transmission. The isolated virus was infectious in pigs when inoculated orally into 3-day-old newborn piglets, leading to clinical signs of diarrhea and fecal virus shedding. These results confirmed that it is a novel swine enteric coronavirus representing the fifth porcine coronavirus.
African swine fever (ASF) is a highly lethal contagious disease of swine caused by African swine fever virus (ASFV). At present, it is listed as a notifiable disease reported to the World Organization for Animal Health (OIE) and a class one animal disease ruled by Chinese government. ASF has brought significant economic losses to the pig industry since its outbreak in China in August 2018. In this review, we recapitulated the epidemic situation of ASF in China as of July 2020 and analyzed the influencing factors during its transmission. Since the situation facing the prevention, control, and eradication of ASF in China is not optimistic, safe and effective vaccines are urgently needed. In light of the continuous development of ASF vaccines in the world, the current scenarios and evolving trends of ASF vaccines are emphatically analyzed in the latter part of the review. The latest research outcomes showed that attempts on ASF gene-deleted vaccines and virus-vectored vaccines have proven to provide complete homologous protection with promising efficacy. Moreover, gaps and future research directions of ASF vaccine are also discussed.
We apply methods of Mahler to obtain explicit lower bounds for certain combinations of ff-functions satisfying systems of linear differential equations as studied by Makarov. Our results sharpen and generalise earlier results of Mahler, Shidlovskii, and Vaananen.
A porcine reproductive and respiratory syndrome virus (PRRSV) QY1 was serially passed on Marc-145 cells. Virulence of different intermediate derivatives of QY1 (P5, P60, P80, and P100) were determined. The study found that QY1 had been gradually attenuated during the in vitro process. Pathogenicity study showed that pigs inoculated with QY1 P100 and P80 did not develop any significant PRRS clinic symptoms. However, mild-to-moderate clinical signs and acute HP-PRRSV symptoms of infection were observed in pigs inoculated with QY1 P60 and P5, respectively. Furthermore, we determined the whole genome sequences of these four intermediate viruses. The results showed that after 100 passages, compared to QY1 P5, a total of 32 amino acid mutations were found. Moreover, there were one nucleotide deletion and a unique 34-amino acid deletion found at 5′UTR and in nsp2 gene during the attenuation process, respectively. Such deletions were genetically stable in vivo. Following PRRSV experimental challenge, pigs inoculated with a single dose of QY1 P100 developed no significant clinic symptoms and well tolerated lethal challenge, while QY1 P80 group still developed mild fever in the clinic trial after challenge. Thus, we concluded that QY1 P100 was a promising and highly attenuated PRRSV vaccine candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.