With the ever-increasing popularity of mobile computing technology, a wide range of computational resources or services (e.g., movies, food, and places of interest) are migrating to the mobile infrastructure or devices (e.g., mobile phones, PDA, and smart watches), imposing heavy burdens on the service selection decisions of users. In this situation, service recommendation has become one of the promising ways to alleviate such burdens. In general, the service usage data used to make service recommendation are produced by various mobile devices and collected by distributed edge platforms, which leads to potential leakage of user privacy during the subsequent cross-platform data collaboration and service recommendation process. Locality-Sensitive Hashing (LSH) technique has recently been introduced to realize the privacy-preserving distributed service recommendation. However, existing LSH-based recommendation approaches often consider only one quality dimension of services, without considering the multidimensional recommendation scenarios that are more complex but more common. In view of this drawback, we improve the traditional LSH and put forward a novel LSH-based service recommendation approach named SerRecmulti-qos, to protect users’ privacy over multiple quality dimensions during the distributed mobile service recommendation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.