High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.
Mg-Zn-Ca amorphous alloys are considered as potential bone implants. A large number of works have focused on the alloys under free corrosion environment. However, the real service environment of bone implants is a kind of chemistry-mechanics interactive environment in which the materials not only suffer corrosion by body fluids but also bear applied force induced by body movement. In order to imitate the real service environment, surface morphologies and mechanical properties of Mg-Zn-Ca amorphous alloys were studied under different chemistry-mechanics interactive environments in this paper. It was found that cracks and Ca/Mg phosphates formed on the surface of amorphous alloys. The compressive strength of the alloys decreased seriously but could still reach an acceptable value to avoid material failure. Fan-shaped patterns found on all the samples implied that brittle fracture was the main fracture form. Moreover, vein-like patterns could still be found in some areas, showing a locally plastic deformation. This was the reason why the alloy could maintain a high compressive strength after severe and interactive treatments. The study could guide related works in the establishment of experimental environments in the future, which will facilitate a more accurate biomedical evaluation of bone implants.
Mg‒Zn‒Ca metallic glasses are regarded as promising biodegradable materials. Previous studies on this alloy system have mostly focused on the composition regions with a large critical size (Dc) for the formation of metallic glasses, while this paper investigates the composition regions with a small Dc, which has been overlooked by researchers for a long time. The effects of the addition of Ag, Nd, and Yb elements on the microstructure and mechanical properties of Mg‒Zn‒Ca metallic glasses were studied. It was found that the Mg‒Zn‒Ca metallic glass exhibits a single and uniform amorphous structure with a compressive strength of 590 MPa. After the addition of a small amount of Ag into the alloy, the amorphous matrix is retained and new precipitate phases that lead to the decrease of the compressive strength are formed. The addition of the rare earth elements Nd and Yb changes the microstructure from a single amorphous matrix to a large number of quasicrystal phases, which results in an increase in compressive strength. The compressive strength of the Mg‒Zn‒Ca‒Yb alloy increases to 606.2 MPa due to the formation of multi-layered swirling solidified structure and a large number of small quasicrystals with high microhardness. Moreover, this study can be considered as a useful supplement to the existing studies on the Mg‒Zn‒Ca alloy system; it also provides new ideas for designing the microstructure and spatial structure of quasicrystal containing alloys with high performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.