Indicators of Compromise (IOCs) are artifacts observed on a network or in an operating system that can be utilized to indicate a computer intrusion and detect cyber-attacks in an early stage. Thus, they exert an important role in the field of cybersecurity. However, state-of-the-art IOCs detection systems rely heavily on hand-crafted features with expert knowledge of cybersecurity, and require large-scale manually annotated corpora to train an IOC classifier. In this paper, we propose using an end-to-end neural-based sequence labelling model to identify IOCs automatically from cybersecurity articles without expert knowledge of cybersecurity. By using a multi-head selfattention module and contextual features, we find that the proposed model is capable of gathering contextual information from texts of cybersecurity articles and performs better in the task of IOC identification. Experiments show that the proposed model outperforms other sequence labelling models, achieving the average F1-score of 89.0% on English cybersecurity article test set, and approximately the average F1-score of 81.8% on Chinese test set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.