Recent FPGA-based implementations of network virtualization represent a significant step forward in network performance and scalability. Although these systems have been shown to provide orders of magnitude higher performance than solutions using software-based routers, straightforward reconfiguration of hardware-based virtual networks over time is a challenge. In this paper, we present the implementation of a reconfigurable network virtualization substrate that combines several partially-reconfigurable hardware virtual routers with software virtual routers. The update of hardware-based virtual networks in our system is supported via real-time partial FPGA reconfiguration. Hardware virtual networks can be dynamically reconfigured in a fraction of a second without affecting other virtual networks operating in the same FPGA. A heuristic has been developed to allocate virtual networks with diverse bandwidth requirements and network characteristics on this heterogeneous virtualization substrate. Experimental results show that the reconfigurable virtual routers can forward packets at line rate. Partial reconfiguration allows for 20x faster hardware reconfiguration than a previous approach which migrated hardware virtual networks to software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.