ObjectiveThe objective of this study was to determine the frequency of the antimicrobial resistance and genes encoding virulence factors of enterococci isolated in hospitalized burn patients in a major burn center in Ahvaz, southwest of Iran. A total of 340 bacterial isolates were collected from the burn center from February 2014 to February 2015. The antimicrobial susceptibility and MIC of vancomycin were determined using the disk diffusion and micro-agar dilution techniques. The genus and species-specific genes, potential virulence genes, and vanA and vanB genes were detected by polymerase chain reaction.ResultsAccording to our results, out of the 340 bacterial isolates, 16.4% (n = 56) were identified as enterococci. Out of the 56 enterococcal isolates, 35 (62.5%) were Enterococcus faecalis and 21 (37.5%) were Enterococcus faecium. More than 20% (n = 5) of E. faecium demonstrated resistance to vancomycin. The gelE and asa genes were the most prevalent virulence genes in E. faecalis (48.5%) and E. faecium (43%) isolates. The emergence of vancomycin resistant E. faecium strains which have several virulence factors should be considered as a major cause of concern for burn centers. Control and management of infections induced by enterococci should be regarded as highly important in burn patients.
Hepatitis-associated aplastic anemia (HAAA) is an uncommon but distinct variant of aplastic anemia in which pancytopenia appears two to three months after an acute attack of hepatitis. HAAA occurs most frequently in young male children and is lethal if leave untreated. The etiology of this syndrome is proposed to be attributed to various hepatitis and non hepatitis viruses. Several hepatitis viruses such as HAV, HBV, HCV, HDV, HEV and HGV have been associated with this set of symptoms. Viruses other than the hepatitis viruses such as parvovirus B19, Cytomegalovirus, Epstein bar virus, Transfusion Transmitted virus (TTV) and non-A-E hepatitis virus (unknown viruses) has also been documented to develop the syndrome. Considerable evidences including the clinical features, severe imbalance of the T cell immune system and effective response to immunosuppressive therapy strongly present HAAA as an immune mediated mechanism. However, no association of HAAA has been found with blood transfusions, drugs and toxins. Besides hepatitis and non hepatitis viruses and immunopathogenesis phenomenon as causative agents of the disorder, telomerase mutation, a genetic factor has also been predisposed for the development of aplastic anemia. Diagnosis includes clinical manifestations, blood profiling, viral serological markers testing, immune functioning and bone marrow hypocellularity examination. Patients presenting the features of HAAA have been mostly treated with bone marrow or hematopoietic cell transplantation from HLA matched donor, and if not available then by immunosuppressive therapy. New therapeutic approaches involve the administration of steroids especially the glucocorticoids to augment the immunosuppressive therapy response. Pancytopenia following an episode of acute hepatitis response better to hematopoietic cell transplantation than immunosuppressive therapy.
The practical application of nanoparticles (NPs) as chemotherapeutic drug delivery systems is often hampered by issues such as poor circulation stability and targeting inefficiency. Here, we have utilized a simple approach to prepare biocompatible and biodegradable pHresponsive hybrid NPs that overcome these issues. The NPs consist of a drug-loaded polylactic-co-glycolic acid (PLGA) core covalently 'wrapped' with a crosslinked bovine serum albumin (BSA) shell designed to minimize interactions with serum proteins and macrophages that inhibit target recognition. The shell is functionalized with the acidity-triggered rational membrane (ATRAM) peptide to facilitate internalization specifically into cancer cells within the acidic tumor microenvironment. Following uptake, the unique intracellular conditions of cancer cells degrade the NPs, thereby releasing the chemotherapeutic cargo. The drugloaded NPs showed potent anticancer activity in vitro and in vivo while exhibiting no toxicity to healthy tissue. Our results demonstrate that the ATRAM-BSA-PLGA NPs are a promising targeted cancer drug delivery platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.