Background
Enhance recovery after surgery (ERAS) is a new and promising paradigm for spine surgery. The purpose of this study is to investigate the effectiveness and safety of a multimodal and evidence-based ERAS pathway to the patients undergoing anterior cervical discectomy and fusion (ACDF).
Methods
The patients treated with the ACDF-ERAS pathway were compared with a historical cohort of patients who underwent ACDF before ERAS pathway implementation. Primary outcome was length of stay (LOS). Secondary outcomes included cost, MacNab grading, complication rates and 90-day readmission and reoperation. And perioperative factors and postoperative complications were reviewed.
Results
The ERAS protocol was composed of 21 components. More patients undergoing multi-level surgery (n ≥ 3) were included in the ERAS group. The ERAS group showed a shorter LOS and a lower cost than the conventional group. The postoperative satisfaction of patients in ERAS group was better than that in conventional group. In addition, the rate of overall complications was significantly higher in the conventional group than that in the ERAS group. There were no significant differences in operative time, postoperative drainage, or 90-day readmission and reoperation.
Conclusions
The ACDF-tailored ERAS pathway can reduce LOS, cost and postoperative complications, and improve patient satisfaction without increasing 90-day readmission and reoperation.
Background: The senescence of nucleus pulposus (NP) cells plays a vital role in the pathogenesis of intervertebral disc (IVD) degeneration (IDD). NADPH oxidase 4 (NOX4)-associated oxidative stress has been shown to induce premature NP cell senescence. Enhancer of zeste homolog 2 (EZH2) is a crucial gene regulating cell senescence. The aim of this study was to investigate the roles of EZH2 in NOX4-induced NP cell senescence and a feedback loop between EZH2 and NOX4. Results: The down-regulation of EZH2 and the up-regulation of NOX4 and p16 were observed in the degenerative discs of aging rats. EZH2 regulated NP cell senescence via the H3K27me3-p16 pathway. Also, EZH2 regulated the expression of NOX4 in NP cells through the histone H3 lysine 27 trimethylation (H3K27me3) in the promoter of NOX4 gene. Furthermore, NOX4 down-regulated EZH2 expression in NP cells via the canonical Wnt/β-catenin pathway. Conclusions: A positive feedback loop between EZH2 and NOX4 is involved in regulating NP cell senescence, which provides a novel insight into the mechanism of IDD and a potential therapeutic target for IDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.