• An increasing number of small, indeterminate pulmonary lesions need to be characterized. • Entire microcoil and leaving-microcoil-end implantation methods were described for nodule localization. • Adjacent microcoil localization prior to video-assisted thoracoscopic surgical resection involved minimal intervention. • Preoperative microcoil localization facilitates the definitive resection of small pulmonary nodules.
Intracerebral hemorrhage (ICH) can lead to brain damage and even death, and there is lack of effective therapeutic methods for treating ICH. Although recent studies have focused on the administration of metformin in treating stroke, there is no literature to support whether it can be used to treat ICH. Therefore, the aim of this study was to evaluate the possible effects of metformin on ICH and the underlying mechanisms of those effects. An ICH model was established in adult male Sprague-Dawley rats. Rats were randomly divided into three groups: sham group, ICH group, and ICH+metformin group. The neurobehavioral deficit scoring method was used to examine neurological function in rats. The levels of lipid peroxidation antioxidant enzyme and 8-iso-PGF2α were detected to evaluate oxidative stress. Survival of striatal neurons was examined by TUNEL staining, immunohistochemistry and HE staining. The levels of p-JNK, p-c-Jun and cleaved caspase-3 in the striatum were measured by western blotting. The results demonstrated that metformin protected rats from neurological deficits induced by ICH. Moreover, metformin reduced oxidative stress and preserved the survival of striatal neurons under ICH conditions. Furthermore, metformin downregulated the levels of apoptotic factors (p-JNK3, p-c-Jun and cleaved caspase-3) as well as pro-inflammatory cytokines (IL-1β, IL-4 and IL-6 and TNF-α). Collectively, we speculate that metformin may be a potential clinical treatment for ICH patients.
Background:Intravoxel incoherent motion (IVIM) has the potential to provide both diffusion and perfusion information without an exogenous contrast agent, its application for the brain is promising, however, feasibility studies on this are relatively scarce. The aim of this study is to assess the feasibility of IVIM perfusion in patients with acute ischemic stroke (AIS).Methods:Patients with suspected AIS were examined by magnetic resonance imaging within 24 h of symptom onset. Fifteen patients (mean age was 68.7 ± 8.0 years) who underwent arterial spin labeling (ASL) and diffusion-weighted imaging (DWI) were identified as having AIS with ischemic penumbra were enrolled, where ischemic penumbra referred to the mismatch areas of ASL and DWI. Eleven different b-values were applied in the biexponential model. Regions of interest were selected in ischemic penumbras and contralateral normal brain regions. Fast apparent diffusion coefficients (ADCs) and ASL cerebral blood flow (CBF) were measured. The paired t-test was applied to compare ASL CBF, fast ADC, and slow ADC measurements between ischemic penumbras and contralateral normal brain regions. Linear regression and Pearson's correlation were used to evaluate the correlations among quantitative results.Results:The fast ADCs and ASL CBFs of ischemic penumbras were significantly lower than those of the contralateral normal brain regions (1.93 ± 0.78 μm2/ms vs. 3.97 ± 2.49 μm2/ms, P = 0.007; 13.5 ± 4.5 ml·100 g-1·min-1 vs. 29.1 ± 12.7 ml·100 g-1·min-1, P < 0.001, respectively). No significant difference was observed in slow ADCs between ischemic penumbras and contralateral normal brain regions (0.203 ± 0.090 μm2/ms vs. 0.198 ± 0.100 αμm2/ms, P = 0.451). Compared with contralateral normal brain regions, both CBFs and fast ADCs decreased in ischemic penumbras while slow ADCs remained the same. A significant correlation was detected between fast ADCs and ASL CBFs (r = 0.416, P < 0.05). No statistically significant correlation was observed between ASL CBFs and slow ADCs, or between fast ADCs and slow ADCs (r = 0.111, P = 0.558; r = 0.200, P = 0.289, respectively).Conclusions:The decrease in cerebral blood perfusion primarily results in the decrease in fast ADC in ischemic penumbras; therefore, fast ADC can reflect the perfusion situation in cerebral tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.