Studies of transcription regulation are often focused on binding of transcription factors (TFs) to a small number of promoters of interest. It is often assumed that TFs are in great excess to their binding sites (TFBSs) and competition for TFs between DNA sites is seldom considered. With increasing evidence that TFBSs are exceedingly abundant for many TFs and significant variations in TF and TFBS numbers occur during growth, the interplay between a TF and all TFBSs should not be ignored. Here, we use additional decoy DNA sites to quantitatively analyze how the relative abundance of a TF to its TFBSs impacts the steady-state level and onset time of gene expression for the auto-activated Escherichia coli PhoB response regulator. We show that increasing numbers of decoy sites progressively delayed transcription activation and lowered promoter activities. Perturbation of transcription regulation by additional TFBSs did not require extreme numbers of decoys, suggesting that PhoB is approximately at capacity for its DNA sites. Addition of decoys also converted a graded response to a bi-modal response. We developed a binding competition model that captures the major features of experimental observations, providing a quantitative framework to assess how variations in TFs and TFBSs influence transcriptional responses.
The prokaryotic community composition, species diversity and the distribution patterns at various taxonomic levels in a salt lake (Chaka salt lake), solar salterns (Taipei saltworks and Dongfang saltworks), and salt mines (Yuanyongjing salt mine, Xiangyan salt mine, and Dinyuan salt mine) were investigated using clone library or Illumina MiSeq sequencing. The clone library approach revealed that the salt lake harbors low species diversity (H’ = 0.98) as compared to the solar saltern (H’ = 4.36) and salt mine (H’ = 3.57). The dominant group in the salt lake is a species from the genus Haloparvum which constitutes about 85% of the total sequences analyzed. The species diversities in salt salterns and salt mines are richer than in the salt lake, and the dominant group is less significant in terms of total percentage. High-throughput sequencing showed that geographical isolation greatly impacted on the microbial community (phyla level) and species diversity (operational taxonomic units (OTUs) level) of salt mines. Species of the genus Natronomonas are found in all three types of environments investigated. In addition, the microbial community and species diversity of different stratums of the salt mine are very similar. Furthermore, species of the genus Halorubrum flourish in the newest stratum of salt mine and have become the dominant group. This study provides some new knowledge on the species diversity and prokaryotic community composition of three typical hypersaline environments.
Binding of transcription factor (TF) proteins to regulatory DNA sites is key to accurate control of gene expression in response to environmental stimuli. Theoretical modeling of transcription regulation is often focused on a limited set of genes of interest, while binding of the TF to other genomic sites is seldom considered. The total number of TF binding sites (TFBSs) affects the availability of TF protein molecules and sequestration of a TF by TFBSs can promote bistability. For many signaling systems where a graded response is desirable for continuous control over the input range, biochemical parameters of the regulatory proteins need be tuned to avoid bistability. Here we analyze the mono-/bistable parameter range for positively autoregulated two-component systems (TCSs) in the presence of different numbers of competing TFBSs. TCS signaling, one of the major bacterial signaling strategies, couples signal perception with output responses via protein phosphorylation. For bistability, competition for TF proteins by TFBSs lowers the requirement for high fold change of the autoregulated transcription but demands high phosphorylation activities of TCS proteins. We show that bistability can be avoided with a low phosphorylation capacity of TCSs, a high TF affinity for the autoregulated promoter or a low fold change in signaling protein levels upon induction. These may represent general design rules for TCSs to ensure uniform graded responses. Examining the mono-/bistability parameter range allows qualitative prediction of steady-state responses, which are experimentally validated in the E. coli CusRS system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.