This article presents a facile approach to centimeter-scale colloidal photonic crystals (PCs) with narrow stopbands assembled on low-adhesive superhydrophobic substrates. The full-width-at-half-maxima of the stopbands are just 12 nm. The narrow stopbands of colloidal PCs are ascribed to the combined effects of perfectly ordered assembly structure, large-scale crack elimination, decreased void fraction, and sufficient thickness of the colloidal PCs. These properties result from a self-assembly process on a low-adhesive superhydrophobic substrate. Latex suspension on this substrate displays a receding three-phase contact line during evaporation, which releases tensile stress induced by latex shrinkage and results in complete elimination of cracks in the colloidal PCs. Furthermore, the simultaneous assembly of latex particles on the outermost layer of a spread liquid film contributes to the perfectly ordered assembly structure. This facile fabrication of centimeter-scale colloidal PCs with narrow stopbands will offer significant insights into the design and creation of novel optical devices.
Hydrogels that are mechanically tough and capable of strong underwater adhesion can lead to a paradigm shift in the design of adhesives for a variety of biomedical applications. We hereby innovatively develop a facile but efficient strategy to prepare hydrogel adhesives with strong and instant underwater adhesion, on-demand detachment, high toughness, notch-insensitivity, selfhealability, low swelling index, and tailorable surface topography. Specifically, a polymerization lyophilization conjugation fabrication method was proposed to introduce tannic acid (TA) into the covalent network consisting of polyethylene glycol diacrylate (PEGDA) of substantially high molecular weight. The presence of TA facilitated wet adhesion to various substrates by forming collectively strong noncovalent bonds and offering hydrophobicity to allow water repellence and also provided a reversible cross-link within the binary network to improve the mechanical performance of the gels. The long-chain PEGDA enhanced the efficacy and stability of TA conjugation and contributed to gel mechanics and adhesion by allowing chain diffusion and entanglement formation. Moreover, PEGDA/TA hydrogels were demonstrated to be biocompatible and capable of accelerating wound healing in a skin wound animal model as compared to commercial tissue adhesives and can be applied for the treatment of both epidermal and intracorporeal wounds. Our study provides new, critical insight into the design principle of all-in-one hydrogels with outstanding mechanical and adhesive properties and can potentially enhance the efficacy of hydrogel adhesives for wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.