The analysis of elastic wave propagation in cracked structures is very useful in the crack detection by the ultrasonic guided wave method. This study presents an accurate spectral element modeling method for cracked slender structural members by using refined waveguide models and a more realistic crack model. Firstly, a spatial spectral beam element model is established for uncracked slender structural member based on the Love rod theory, the modified Timoshenko beam theory, and the Saint-Venant’s torsion theory. Then, the complete local additional flexibility matrix for crack in the structural member with rectangular cross section is derived from the theory of elastic fracture mechanics, and a two-node condensed spectral element model considering the stiffness coupling effect caused by the crack is established for cracked slender structural member. The wave response in cracked structures is solved by the numerical inverse Laplace transformation method. A thorough comparison of the wave responses in cracked structural member evaluated by the presented spectral element model and the 3D solid finite element model is given in the numerical example, which verifies the accuracy and high efficiency of the presented method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.