This paper presents a robust 3D point cloud registration algorithm based on bidirectional Maximum Correntropy Criterion (MCC). Comparing with traditional registration algorithm based on the mean square error (MSE), using the MCC is superior in dealing with complex registration problem with non-Gaussian noise and large outliers. Since the MCC is considered as a probability measure which weights the corresponding points for registration, the noisy points are penalized. Moreover, we propose to use bidirectional measures which can maximum the overlapping parts and avoid the registration result being trapped into a local minimum. Both of these strategies can better apply the information theory method to the point cloud registration problem, making the algorithm more robust. In the process of implementation, we integrate the fixed-point optimization technique based on the iterative closest point algorithm, resulting in the correspondence and transformation parameters that are solved iteratively. The comparison experiments under noisy conditions with related algorithms have demonstrated good performance of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.