Plants and animals rely on innate immunity to prevent infections by detection of microbe-associated molecular patterns (MAMPs) through pattern-recognition receptors (PRRs). The plant PRR FLS2, a leucine-rich repeat-receptor kinase, recognizes bacterial flagellin and initiates immune signaling by association with another leucinerich repeat-receptor-like kinase, BAK1. It remains unknown how the FLS2/BAK1 receptor complex activates intracellular signaling cascades. Here we identified the receptor-like cytoplasmic kinase BIK1 that is rapidly phosphorylated upon flagellin perception, depending on both FLS2 and BAK1. BIK1 associates with FLS2 and BAK1 in vivo and in vitro. BIK1 is phosphorylated by BAK1, and BIK1 also directly phosphorylates BAK1 and FLS2 in vitro. The flagellin phosphorylation site Thr 237 of BIK1 is required for its phosphorylation on BAK1 and FLS2, suggesting that BIK1 is likely first phosphorylated upon flagellin perception and subsequently transphosphorylates FLS2/ BAK1 to propagate flagellin signaling. Importantly, bik1 mutants are compromised in diverse flagellin-mediated responses and immunity to the nonpathogenic bacterial infection. Thus, BIK1 is an essential component in MAMP signal transduction, which links the MAMP receptor complex to downstream intracellular signaling.pathogen-associated molecular pattern/microbe-associated molecular pattern-triggered immunity | phosphorylation | pattern recognition receptor | BRI1-associated receptor kinase | flagellin sensing 2 P lants and animals live in an environment with a diverse array of microorganisms and have developed the capacity to timely detect potential infectious agents without destroying their own tissues. Innate immunity, the first line of inducible defense, is triggered instantaneously upon the detection of conserved pathogen-or microbe-associated molecular patterns (PAMP/ MAMPs) (1-5). In plants, MAMPs are usually perceived by cellsurface pattern-recognition receptors (PRRs) and mount PAMP/ MAMP-triggered immunity (PTI). Different MAMPs likely trigger convergent immune signaling events, including changes in cytoplasmic Ca 2+ levels, activation of MAP kinase (MAPK) cascades, induction of defense-related genes, production of reactive oxygen species and nitric oxide, deposition of callose to reinforce the cell wall, and stomatal closure to prevent pathogen entry (1-5). PTI is important for plants to thwart off a broad spectrum of potential pathogens.One of the best-characterized plant MAMP receptors is the leucine-rich repeat receptor kinase (LRR-RK) protein FLS2 that recognizes a conserved 22-amino-acid peptide (flg22) from bacterial flagellin (6). Upon flagellin perception, FLS2 rapidly associates with another LRR-receptor-like kinase (RLK), BAK1, thereby initiating downstream signaling (7,8). BAK1 was originally identified as a BRI1-associated receptor kinase mediating brassinosteroid signaling (9, 10). Brassinosteroids (BRs), a class of plant hormone with essential roles in plant growth and development, are perceived by LRR-RK BRI1, ...
Innate immunity represents the first line of inducible defense against microbial infection in plants and animals1–3. In both kingdoms, recognition of pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs), such as flagellin, initiates convergent signalling pathways involving MAP kinase (MAPK) cascades and global transcriptional changes to boost immunity1–4. Although Ca2+ has long been recognized as an essential and conserved primary mediator in plant defense responses, how Ca2+ signals are sensed and relayed into early MAMP signalling is unknown5,6. Here, we use a functional genomic screen and genome-wide gene expression profiling to show that four calcium-dependent protein kinases (CDPKs) are Ca2+ sensor PKs critical to transcriptional reprogramming in plant innate immune signalling. Unexpectedly, CDPKs and MAPK cascades act differentially in four MAMP-mediated regulatory programs to control early genes involved in synthesis of defense peptides and metabolites, cell wall modifications and redox signalling. Transcriptome profile comparison suggests that CDPKs are the convergence point of signalling triggered by most MAMPs. Double, triple and quadruple cpk mutant plants display progressively diminished oxidative burst and gene activation induced by flg22, as well as compromised pathogen defense. In contrast to negative roles of calmodulin (CAM) and a CAM-activated transcription factor in plant defense7,8, the present study reveals Ca2+ signalling complexity and demonstrates key positive roles of specific CDPKs in initial MAMP signalling.
Innate immune responses are triggered by the activation of pattern-recognition receptors (PRRs). The Arabidopsis PRR FLS2 senses bacterial flagellin and initiates immune signaling by association with BAK1. The molecular mechanisms underlying the attenuation of FLS2 activation are largely unknown. We report that flagellin induces recruitment of two closely related U-box E3 ubiquitin ligases PUB12 and PUB13 to FLS2 receptor complex in Arabidopsis. BAK1 phosphorylates PUB12/13 and is required for FLS2-PUB12/13 association. PUB12/13 polyubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, and the pub12 and pub13 mutants displayed elevated immune responses to flagellin treatment. Our study has revealed a unique regulatory circuit of direct ubiquitination and turnover of FLS2 by BAK1-mediated phosphorylation and recruitment of specific E3 ligases for attenuation of immune signaling.
SUMMARY Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.