Oxidative stress has been strongly implicated in the pathogenesis of traumatic brain injury (TBI). Mitochondrial ferritin (Ftmt) is reported to be closely related to oxidative stress. However, whether Ftmt is involved in TBI-induced oxidative stress and neurological deficits remains unknown. In the present study, the controlled cortical impact model was established in wild-type and Ftmt knockout mice as a TBI model. The Ftmt expression, oxidative stress, neurological deficits, and brain injury were measured. We found that Ftmt expression was gradually decreased from 3 to 14 days post-TBI, while oxidative stress was gradually increased, as evidenced by reduced GSH and superoxide dismutase levels and elevated malondialdehyde and nitric oxide levels. Interestingly, the extent of reduced Ftmt expression in the brain was linearly correlated with oxidative stress. Knockout of Ftmt significantly exacerbated TBI-induced oxidative stress, intracerebral hemorrhage, brain infarction, edema, neurological severity score, memory impairment, and neurological deficits. However, all these effects in Ftmt knockout mice were markedly mitigated by pharmacological inhibition of oxidative stress using an antioxidant, N-acetylcysteine. Taken together, these results reveal an important correlation between Ftmt and oxidative stress after TBI. Ftmt deficiency aggravates TBI-induced brain injuries and neurological deficits, which at least partially through increasing oxidative stress levels. Our data suggest that Ftmt may be a promising molecular target for the treatment of TBI.
The polymerization of α-olefins catalyzed by zirconium metallocene catalyst was systematically studied through experiments and density functional theory (DFT) calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.