Gelatin methacryloyl (GelMA) is a widely used hydrogel with skin-derived gelatin acting as the main constituent. However, GelMA has not been used in the development of wearable biosensors, which are emerging devices that enable personalized healthcare monitoring. This work highlights the potential of GelMA for wearable biosensing applications by demonstrating a fully solution-processable and transparent capacitive tactile sensor with microstructured GelMA as the core dielectric layer. A robust chemical bonding and a reliable encapsulation approach are introduced to overcome detachment and water-evaporation issues in hydrogel biosensors. The resultant GelMA tactile sensor shows a highpressure sensitivity of 0.19 kPa −1 and one order of magnitude lower limit of detection (0.1 Pa) compared to previous hydrogel pressure sensors owing to its excellent mechanical and electrical properties (dielectric constant). Furthermore, it shows durability up to 3000 test cycles because of tough chemical bonding, and long-term stability of 3 days due to the inclusion of an encapsulation layer, which prevents water evaporation (80% water content). Successful monitoring of various human physiological and motion signals demonstrates the potential of these GelMA tactile sensors for wearable biosensing applications.
Cotton fiber is the most commonly used fabric in textiles and clothing. As compared to inorganic materials like foam, sponge and paper, cotton fibers boast higher levels of flexibility and toughness, which makes it more durable and be better integrated with clothes. In this study, a conductive cotton fiber material modified by reduced graphene oxide (rGO) was prepared, and applied in pressure sensor. The highest sensitivity of the pressure sensor constructed is 0.21 kPa−1, and the pressure range covers up to 500 kPa, which demonstrates a combination of fine sensitivity and broader pressure range. The pressure sensor developed in this study demonstrates great performance in real-time monitoring of human physiological signals like pulse, breath rate and speech recognition, boasting great application value in wearable electronics and smart clothing.
Piezoelectric bimorph cantilever is a typical structure for vibration energy harvesting. This paper studies the method to improve the accuracy of FEA (finite element analysis) simulation for piezoelectric bimorph cantilever. The COSMOL simulation methods based on 1 D (dimension) model of Euler Bernoulli beam, as well as 2 D and 3 D models of solid mechanics are proposed respectively. Compared with the theory and experiment results given by Erturk A, the influences of 1 D and 3 D piezoelectric material parameters on simulation accuracy in FEA modeling is discussed. The simulation error can be reduced to less than 1.2% by using 1D piezoelectric material parameters in COMSOL simulation, while the maximum simulation error can be up to 28% by using 3D piezoelectric material parameters. Comparing serial and parallel configurations of piezoelectric bimorph cantilever, the output electrical powers, varying with the excitation frequency and load resistance, are also discussed in COMSOL simulation. Performance comparation of three kinds of piezoelectric bimorph cantilevers with tip mass shows that the modelling and simulation in finite element methods by COMSOL are simple and convenient, and are suitable for the electromechanical coupling analysis and optimization of complex topological structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.