We investigate the rapid formation and evolutionary mechanisms of an extremely severe and persistent haze episode that occurred in northern China during winter 2015 using comprehensive ground and vertical measurements, along with receptor and dispersion model analysis. Our results indicate that the life cycle of a severe winter haze episode typically consists of four stages: (1) rapid formation initiated by sudden changes in meteorological parameters and synchronous increases in most aerosol species, (2) persistent evolution with relatively constant variations in secondary inorganic aerosols and secondary organic aerosols, (3) further evolution associated with fog processing and significantly enhanced sulfate levels, and (4) clearing due to dry, cold north-northwesterly winds. Aerosol composition showed substantial changes during the formation and evolution of the haze episode but was generally dominated by regional secondary aerosols (53–67%). Our results demonstrate the important role of regional transport, largely from the southwest but also from the east, and of coal combustion emissions for winter haze formation in Beijing. Also, we observed an important downward mixing pathway during the severe haze in 2015 that can lead to rapid increases in certain aerosol species.
China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution.
Organic aerosol (OA) constituted a large fraction of aerosol particles during severe haze episodes in winter in northern China, yet our understanding of its physical and chemical processing was limited. Here we investigate the sources and processes of OA during four haze episodes in winter in 2016 using high-resolution aerosol mass spectrometer. The PM 2.5 reached 400 μg/m 3 during the severest episode (Ep1) when Beijing issued a red alert and implemented strict emission controls. Our results showed that secondary OA (SOA) dominated OA during haze episodes on average accounting for 46-66% of OA and was comparable to secondary inorganic aerosol (SIA) with the SOA/SIA ratios being 0.51-0.72. Primary OA from fossil-fuel combustion, biomass burning, and cooking presented very strong diurnal variations during haze episodes and contributed up to 60% in OA at night. Comparatively, the changes in semivolatile and low-volatility SOA were relatively small except a substantial increase in aqueous phase-related oxidized OA (aq-OOA) during Ep1 with high relative humidity and aerosol water content. aq-OOA fell well into a small region in the middle of the triangle plot of f 44 versus f 43 (fraction of m/z 44 and 43 in OA, respectively), which can be used as a diagnostic for the presence of aqueous phase processing of SOA. In addition, the increases of SO 2 + /SO 3 + as a function of relative humidity, the triangle plot of f H2SO þ 4 versus f HSO þ 3 , and high nitrogen-to-carbon ratio in aq-OOA suggest the potential formation of sulfur-and nitrogen-containing organic compounds through aqueous phase processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.