SUMMARY
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
Induction of penetration gland emptying by cercariae of the bird schistosomes Trichobilharzia szidati and T. regenti employing linoleic acid, linolenic acid, praziquantel and calcium ionophore A23187 showed that both postacetabular and circumacetabular cells released their content at chosen stimulant concentrations. The gland secretions consisted of soluble and insoluble parts. The former one adhering to the ground seemed to have different saccharide composition from the glands of Schistosoma mansoni. It bound labelled saccharides, thus exhibiting lectin-like activity. Protein profiles of the latter one were identical after stimulation by all four stimulants in T. szidati. The soluble secretions contained several proteolytic enzymes; 31 kDa and 33 kDa cysteine proteases were identified in E/S products of T. szidati and T. regenti, respectively. The circumacetabular glands contained a significant amount of calcium. Immunohistochemistry revealed that the origin of E/S products after in vitro stimulation is in both penetration glands and tegumental structures. No crossreactivity was observed between the bird schistosomes and a serum raised against S. mansoni elastase.
A transcriptional product of a gene encoding cathepsin B-like peptidase in the bird schistosome Trichobilharzia regenti was identified and cloned. The enzyme was named TrCB2 due to its 77% sequence similarity to cathepsin B2 from the important human parasite Schistosoma mansoni. The zymogen was expressed in the methylotropic yeast Pichia pastoris; procathepsin B2 underwent self-processing in yeast media. The peptidolytic activity of the recombinant enzyme was characterised using synthetic fluorogenic peptide substrates at optimal pH 6.0. Functional studies using different specific inhibitors proved the typical cathepsin B-like nature of the enzyme. The S2 subsite specificity profile of recombinant TrCB2 was obtained. Using monospecific antibodies against the recombinant enzyme, the presence of cathepsin B2 was confirmed in extracts from cercariae (infective stage) and schistosomula (early post-cercarial stage) of T. regenti on Western blots. Also, cross-reactivity was observed between T. regenti and S. mansoni cathepsins B2 in extracts of cercariae, schistosomula or adults. In T. regenti, the antisera localised the enzyme to post-acetabular penetration glands of cercariae implying an important role in the penetration of host skin. The ability of recombinant TrCB2 to degrade skin, serum and nervous tissue proteins was evident. Elastinolytic activity suggests that the enzyme might functionally substitute the histolytic role of the serine class elastase known from S. mansoni and Schistosoma haematobium but not found in Schistosoma japonicum or in bird schistosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.