The objective was to examine the protective effect of metformin (Met) on myocardial ischemia-reperfusion (IR) injury and whether the mechanism was related to the AMPK/ antioxidant enzymes signaling pathway. Rat Langendorff test and H2O2-treated rat cardiomyocytes (H9c2) were used in this study. Met treatment significantly improved left ventricular (LV) function, reduced infarct size and CK-MB release in comparison with IR group. Decreased TUNEL staining positive cells were also observed in IR+Met group ex vivo. Met treatment markedly inhibited IR inducing cell death and significantly decreased apoptosis with few generations of reactive oxygen species (ROS) in H9c2 cells in comparison with IR group. Up-regulated expressions of phosphorylated LKB1/AMPK/ACC, as well as down-regulated expressions of apoptotic proteins (Bax and cleaved caspase 3) were found in IR+Met group when compared to the IR group. Importantly, Met significantly up-regulated the expression of antioxidant enzymes (MnSOD and catalase) during IR procedure either ex vivo or in vitro. Compound C, a conventional inhibitor of AMPK, abolished the promoting effect of Met on antioxidant enzymes, and then attenuated the protective effect of Met on IR injury in vitro. In conclusion, Met exerted protective effect on myocardial IR injury, and this effect was AMPK/ antioxidant enzymes dependent.
Our previous study showed that resveratrol (RSV) exhibited not only anti-tumor effect, but also had potential tumor promotion effect on pancreatic cancer (Paca) cells through up-regulation of VEGF-B. We determined whether metformin (MET) could potentiate the anti-tumor effect of RSV on PaCa in this study. Combination of RSV (100 μmol/l) and MET (20 mmol/l) significantly inhibited tumor growth and increased apoptosis of human PaCa in comparison with RSV or MET alone treatment in PaCa cell lines (Miapaca-2, Panc-1 and Capan-2). Combination of RSV (60 mg/kg, gavage) and MET (250 mg/kg, i.p.) significantly inhibited tumor growth in PaCa bearing nude mice (subcutaneous injection of 5 × 106 Miapaca-2 cells) in comparison with RSV or MET alone treatment on day 40. Combination treatment significantly decreased VEGF-B expression and inhibited activity of GSK-3β when compared to the RSV alone treatment. Up-regulated expressions of Bax, cleaved caspase-3 and down-regulated expression of Bcl-2 were observed in RSV+ MET group in comparison with RSV group either in vitro or in vivo. Inhibition of VEGF-B by VEGF-B small interfering RNA (siRNA) mimicked the effects of MET on PaCa cells. These results suggested that MET, a potential pharmacological inhibitor of VEGF-B signaling pathway, potentiated the anti-tumor effect of RSV on PaCa, and combination of MET and RSV would be a promising modality for clinical PaCa therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.