It is generally reasoned that lethal infections caused by opportunistic pathogens develop permissively by invading a host that is both physiologically stressed and immunologically compromised. However, an alternative hypothesis might be that opportunistic pathogens actively sense alterations in host immune function and respond by enhancing their virulence phenotype. We demonstrate that interferon-gamma binds to an outer membrane protein in Pseudomonas aeruginosa, OprF, resulting in the expression of a quorum-sensing dependent virulence determinant, the PA-I lectin. These observations provide details of the mechanisms by which prokaryotic organisms are directly signaled by immune activation in their eukaryotic host.
Occludin S408 phosphorylation regulates interactions between occludin, ZO-1, and select claudins to define tight junction molecular structure and barrier function.
Occludin loss enhances paracellular macromolecular permeability (radius up to ∼62.5 Å) and is necessary for TNF-induced barrier loss. The latter requires the C-terminal OCEL domain, which stabilizes tight junction–associated occludin and regulates trafficking. Thus OCEL-mediated interactions are critical regulators of macromolecular paracellular flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.