Differentiable neural architecture search (NAS) has attracted significant attention in recent years due to its ability to quickly discover promising architectures of deep neural networks even in very large search spaces. Despite its success, DARTS lacks robustness in certain cases, e.g. it may degenerate to trivial architectures with excessive parametric-free operations such as skip connection or random noise, leading to inferior performance. In particular, operation selection based on the magnitude of architectural parameters was recently proven to be fundamentally wrong showcasing the need to rethink this aspect. On the other hand, zero-cost proxies have been recently studied in the context of sample-based NAS showing promising results -speeding up the search process drastically in some cases but also failing on some of the large search spaces typical for differentiable NAS.In this work we propose a novel operation selection paradigm in the context of differentiable NAS which utilises zero-cost proxies. Our "perturbation-based zerocost operation selection" (Zero-Cost-PT) improves searching time and, in many cases, accuracy compared to the best available differentiable architecture search, regardless of the search space size. Specifically, we are able to find comparable architectures to DARTS-PT on the DARTS CNN search space while being over 40× faster (total searching time 25 minutes on a single GPU). Our code will be available at: https://github.com/avail-upon-acceptance.
We formalize and analyze a fundamental component of dif- ferentiable neural architecture search (NAS): local “opera- tion scoring” at each operation choice. We view existing operation scoring functions as inexact proxies for accuracy, and we find that they perform poorly when analyzed empir- ically on NAS benchmarks. From this perspective, we intro- duce a novel perturbation-based zero-cost operation scor- ing (Zero-Cost-PT) approach, which utilizes zero-cost prox- ies that were recently studied in multi-trial NAS but de- grade significantly on larger search spaces, typical for dif- ferentiable NAS. We conduct a thorough empirical evalu- ation on a number of NAS benchmarks and large search spaces, from NAS-Bench-201, NAS-Bench-1Shot1, NAS- Bench-Macro, to DARTS-like and MobileNet-like spaces, showing significant improvements in both search time and accuracy. On the ImageNet classification task on the DARTS search space, our approach improved accuracy compared to the best current training-free methods (TE-NAS) while be- ing over 10× faster (total searching time 25 minutes on a single GPU), and observed significantly better transferabil- ity on architectures searched on the CIFAR-10 dataset with an accuracy increase of 1.8 pp. Our code is available at: https://github.com/zerocostptnas/zerocost operation score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.