No abstract
WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat Ã-dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 AE 0:05, b h 2 ¼ 0:024 AE 0:001, m h 2 ¼ 0:14 AE 0:02, ¼ 0:166 þ0:076 À0:071 , n s ¼ 0:99 AE 0:04, and 8 ¼ 0:9 AE 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measurements and measurements of large-scale structure (galaxy surveys and the Ly forest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the [D/H] ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Ly forest data to find the model's best-fit cosmological parameters: WMAP's best determination of ¼ 0:17 AE 0:04 arises directly from the temperaturepolarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 AE 0:2 Gyr. With the Ly forest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly forest.By combining WMAP data with other astronomical data, we constrain the geometry of the universe, tot ¼ 1:02 AE 0:02, and the equation of state of the dark energy, w < À0:78 (95% confidence limit assuming w ! À1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background -cosmological parameterscosmology: observations -early universe On-line material: color figure
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.
A simple cosmological model with only six parameters (matter density, m h 2 , baryon density, b h 2 , Hubble constant, H 0 , amplitude of fluctuations, 8 , optical depth, , and a slope for the scalar perturbation spectrum, n s ) fits not only the 3 year WMAP temperature and polarization data, but also small-scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data only, the bestfit values for cosmological parameters for the power-law flat à cold dark matter (ÃCDM) model are ( m h 2 ; b h 2 ; h; n s ; ; 8 ) ¼ (0:1277 þ0:0080 À0:0079 ;0:02229 AE 0:00073;0:732 þ0:031 À0:032 ;0:958 AE 0:016;0:089 AE 0:030; 0:761 þ0:049 À0:048 ). The 3 year data dramatically shrink the allowed volume in this six-dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power-law spectrum, the WMAP data alone require dark matter and favor a spectral index that is significantly less than the Harrison-Zel'dovich-Peebles scale-invariant spectrum (n s ¼ 1; r ¼ 0). Adding additional data sets improves the constraints on these components and the spectral slope. For power-law models, WMAP data alone puts an improved upper limit on the tensor-to-scalar ratio, r 0:002 < 0:65 (95% CL) and the combination of WMAP and the lensing-normalized SDSS galaxy survey implies r 0:002 < 0:30 (95% CL). Models that suppress largescale power through a running spectral index or a large-scale cutoff in the power spectrum are a better fit to the WMAP and small-scale CMB data than the power-law ÃCDM model; however, the improvement in the fit to the WMAP data is only Á 2 ¼ 3 for 1 extra degree of freedom. Models with a running-spectral index are consistent with a higher amplitude of gravity waves. In a flat universe, the combination of WMAP and the Supernova Legacy Survey (SNLS) data yields a significant constraint on the equation of state of the dark energy, w ¼ À0:967 þ0:073 À0:072 . If we assume w ¼ À1, then the deviations from the critical density, K , are small: the combination of WMAP and the SNLS data implies k ¼ À0:011 AE 0:012. The combination of WMAP 3 year data plus the HST Key Project constraint on H 0 implies k ¼ À0:014 AE 0:017 and à ¼ 0:716 AE 0:055. Even if we do not include the prior that the universe is flat, by combining WMAP, large-scale structure, and supernova data, we can still put a strong constraint on the dark energy equation of state, w ¼ À1:08 AE 0:12. For a flat universe, the combination of WMAP and other astronomical data yield a constraint on the sum of the neutrino masses, P m < 0:66 eV (95%CL). Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps using Minkowski functionals, the bispectrum, trispectrum, and a new statistic designed to detect large-scale anisotropies in the fluctuations. Subject headingg s: cosmic microwave background -cosmology: observations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.