This paper presents a technique to mitigate multiple access interference (MAI) in multicarrier code division multiple access (MC-CDMA) wireless communications systems. Although under normal circumstances the MC-CDMA system can achieve high spectral efficiency and resistance towards inter symbol interference (ISI) however when exposed to substantial nonlinear distortion the issue of MAI manifests. Such distortion results when the power amplifiers are driven into saturation or when the transmit signal experiences extreme adverse channel conditions. The proposed technique uses a modified iterative block decision feedback equalizer (IB-DFE) that uses a minimal mean square error (MMSE) receiver in the feed-forward path to nullify the residual interference from the IB-DFE receiver. The received signal is refiltered in an iterative process to significantly improve the MC-CDMA system's performance. The effectiveness of the proposed modified IB-DFE technique in MC-CDMA systems has been analysed under various harsh nonlinear conditions, and the results of this analysis presented here confirm the effectiveness of the proposed technique to outperform conventional methodologies in terms of the bit error rate (BER) and lesser computational complexity.
An automated optimization process for designing and optimising high-performance single microstrip antennas is presented. It consists of the successive use of two optimization methods, bottom-up optimization (BUO) and Bayesian optimization (BO), which are applied sequentially, resulting in electromagnetic (EM)-based artificial neural network modelling. The BUO method is applied for the initial design of the structure of the antennas whereas the BO approach is successively implemented to predict suitable dimensional parameters, leading to broadband, high flat-gain antennas. The optimization process is performed automatically with the combination of an electronic design automation tool and a numerical analyser. The proposed method is easy to use; it allows one to perform the design with little experience, because both structure modelling and sizing are performed automatically. To verify the power of the proposed EM-based method experimentally, two single microstrip antennas have been designed, optimised, fabricated, and measured. The first antenna has flat-gain performance (6.9-7.2 dB) in a frequency band of 8.8-10 GHz. The second has been designed to perform in the 8.7-to 10-GHz band, where it exhibits flat-gain performance with reduced fluctuation in the range of 6.7-7 dB. The experimental results are in good agreement with the numerical data.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.