Antiepileptic drugs (AEDs) have repeatedly shown inconsistent and almost contradictory effects on the neurocognitive system, from substantial impairments in processing speed to the noticeable improvement in working memory and executive functioning. Previous studies have provided a novel insight into the cognitive improvement by bumetanide as a potential antiepileptic drug. Through the current investigation, we evaluated the longitudinal effects of bumetanide, an NKCC1 co-transporter antagonist, on the brain microstructural organization as a probable underlying component for cognitive performance. Microstructure assessment was completed using SPM for the whole brain assay and Freesurfer/TRACULA for the automatic probabilistic tractography analysis. Primary cognitive operations including selective attention and processing speed, working memory capacity and spatial memory were evaluated in 12 patients with a confirmed diagnosis of refractory epilepsy. Participants treated with bumetanide (2 mg/ day) in two divided doses as an adjuvant therapy to their regular AEDs for 6 months, which followed by the re-assessment of their cognitive functions and microstructural organizations. Seizure frequency reduced in eight patients which accompanied by white matter reconstruction; fractional anisotropy (FA) increased in the cingulum-cingulate gyrus (CCG), anterior thalamic radiation (ATR), and temporal part of the superior longitudinal fasciculus (SLFt) in correlation with the clinical response. The voxel-based analysis in responder patients revealed increased FA in the left hippocampus, right cerebellum, and right medial temporal lobe, while mean diffusivity (MD) values reduced in the right occipital lobe and cerebellum. Microstructural changes in SLFt and ATR accompanied by a reduction in the error rate in the spatial memory test. These primary results have provided preliminary evidence for the effect of bumetanide on cognitive functioning through microstructural changes in patients with drug-resistant epilepsy.
Background: The process of cognitive control and resultant selective attention construct the shared root of a continuum of neurocognitive functions. Efficient inhibition of task-irrelevant information and unwanted attributes has been evaluated through various paradigms. Stroop tasks in different forms could provide a platform for detecting the state of this type of inhibition and selective attention. Computational modeling of electroencephalography (EEG) signals associated with attentional control could complement the investigations of this discipline. Methods: Ninety-six trials of a three-condition Color-Word Stroop task were performed while recording EEG. All subjects (9 participants) were right-handed (20 - 25 years), and half were male. Three-condition signal epochs were redefined as two conditions: (1) Differentiated incongruent epochs (DIe), which are incongruent epochs that their equivalent congruent epochs are subtracted from and (2) Neutral epochs, in which intervals of 150 - 300 ms and 350 - 500 ms post-stimulus were extracted. Preprocessed data were then analyzed, and the whole EEG epoch was considered the variable to be compared between conditions. An acceptably fitted support vector machine (SVM) algorithm classified the data. Results: For each individual, the comparison was made regarding DIe and neutral epochs for two intervals (150 - 300 and 350 - 500 ms). The SVM classification method provided acceptable accuracies at 59 - 65% for the 150 - 300 ms interval and 65 - 70% for the 350 - 500 ms interval within individuals. Regarding frequency domain assessments, the Delta frequency band for these two intervals showed no significant difference between the two conditions. Conclusions: The SVM models performed better for the late event-related epoch (350 - 500 ms) classification. Hence, selective attention-related features were more significant in this temporal interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.