Medical image segmentation is an important part of medical image analysis. With the rapid development of convolutional neural networks in image processing, deep learning methods have achieved great success in the field of medical image processing. Deep learning is also used in the field of auxiliary diagnosis of glaucoma, and the effective segmentation of the optic disc area plays an important assistant role in the diagnosis of doctors in the clinical diagnosis of glaucoma. Previously, many U-Net-based optic disc segmentation methods have been proposed. However, the channel dependence of different levels of features is ignored. The performance of fundus image segmentation in small areas is not satisfactory. In this paper, we propose a new aggregation channel attention network to make full use of the influence of context information on semantic segmentation. Different from the existing attention mechanism, we exploit channel dependencies and integrate information of different scales into the attention mechanism. At the same time, we improved the basic classification framework based on cross entropy, combined the dice coefficient and cross entropy, and balanced the contribution of dice coefficients and cross entropy loss to the segmentation task, which enhanced the performance of the network in small area segmentation. The network retains more image features, restores the significant features more accurately, and further improves the segmentation performance of medical images. We apply it to the fundus optic disc segmentation task. We demonstrate the segmentation performance of the model on the Messidor dataset and the RIM-ONE dataset, and evaluate the proposed architecture. Experimental results show that our network architecture improves the prediction performance of the base architectures under different datasets while maintaining the computational efficiency. The results render that the proposed technologies improve the segmentation with 0.0469 overlapping error on Messidor.
Convolutional neural networks (CNN) is the most mainstream solution in the field of image retrieval. Deep metric learning is introduced into the field of image retrieval, focusing on the construction of pair-based loss function. However, most pair-based loss functions of metric learning merely take common vector similarity (such as Euclidean distance) of the final image descriptors into consideration, while neglecting other distribution characters of these descriptors. In this work, we propose relative distribution entropy (RDE) to describe the internal distribution attributes of image descriptors. We combine relative distribution entropy with the Euclidean distance to obtain the relative distribution entropy weighted distance (RDE-distance). Moreover, the RDE-distance is fused with the contrastive loss and triplet loss to build the relative distributed entropy loss functions. The experimental results demonstrate that our method attains the state-of-the-art performance on most image retrieval benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.