The oxidative decomposition mechanism of the lithium battery electrolyte solvent propylene carbonate (PC) with and without PF(6)(-) and ClO(4)(-) anions has been investigated using the density functional theory at the B3LYP/6-311++G(d) level. Calculations were performed in the gas phase (dielectric constant ε = 1) and employing the polarized continuum model with a dielectric constant ε = 20.5 to implicitly account for solvent effects. It has been found that the presence of PF(6)(-) and ClO(4)(-) anions significantly reduces PC oxidation stability, stabilizes the PC-anion oxidation decomposition products, and changes the order of the oxidation decomposition paths. The primary oxidative decomposition products of PC-PF(6)(-) and PC-ClO(4)(-) were CO(2) and acetone radical. Formation of HF and PF(5) was observed upon the initial step of PC-PF(6)(-) oxidation while HClO(4) formed during initial oxidation of PC-ClO(4)(-). The products from the less likely reaction paths included propanal, a polymer with fluorine and fluoro-alkanols for PC-PF(6)(-) decomposition, while acetic acid, carboxylic acid anhydrides, and Cl(-) were found among the decomposition products of PC-ClO(4)(-). The decomposition pathways with the lowest barrier for the oxidized PC-PF(6)(-) and PC-ClO(4)(-) complexes did not result in the incorporation of the fluorine from PF(6)(-) or ClO(4)(-) into the most probable reaction products despite anions and HF being involved in the decomposition mechanism; however, the pathway with the second lowest barrier for the PC-PF(6)(-) oxidative ring-opening resulted in a formation of fluoro-organic compounds, suggesting that these toxic compounds could form at elevated temperatures under oxidizing conditions.
the fact that "the higher unsaturation, the larger merits". These unique properties contribute to the improved electrochemical performance of commercial NCM811/graphite pouch cells up to around 300 cycles with more than 85% capacity retention at 60 °C, along with the LCO cells reaching ≈90% capacity retention over 350 cycles. We hope these findings can provide guidelines for designing functional electrolyte additives for better aggressive battery chemistries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.