Circulating ACE2 and ACE activities can be measured in human EDTA-plasma samples with zinc added to recover enzymatic activity. In a CKD population without previous history of CV disease, ACE2 activity from human EDTA-plasma samples directly correlated with the classical CV risk factors namely older age, diabetes and male gender. Our data suggest that circulating ACE2 is altered in CKD patients at risk for CV event.
Angiotensin converting enzyme (ACE) 2 is a homologue of ACE that catalyzes the conversion of Angiotensin (Ang) II into Ang1-7, which induces vasodilation, anti-fibrotic, anti-proliferative and anti-inflammatory effects. Given that ACE2 counterbalances the effects of Ang II, it has been proposed as a biomarker in kidney disease patients. Circulating ACE2 has been studied in human and experimental studies under physiological and pathological conditions and different techniques have been assessed to determine its enzymatic activity. In patients with cardiovascular (CV) disease circulating ACE2 has been shown to be increased. In addition, hypertensive and diabetic patients have also shown higher circulating ACE2 activities. A study in type 1 diabetes patients found a negative association between circulating ACE2 and estimated glomerular filtration rate in male and female patients. Recently, it has been demonstrated that circulating ACE2 is increased in male patients with chronic kidney disease (CKD) and that it is independently associated with other classical CV risk factors, such as advanced age and diabetes. Furthermore, circulating ACE2 has been shown to be associated with silent atherosclerosis and CV outcomes in CKD patients. In diabetic nephropathy, experimental studies have demonstrated an increase in circulating ACE2 activity both at early and late stages of the disease, as well as a direct association with increased urinary albumin excretion, suggesting that it may be increased as a renoprotective mechanism in these patients. In this paper we will review the measurement of circulating ACE2 and its role in kidney disease, as well as its potential role as a renal and CV biomarker.
-Circulating and renal activity of angiotensin-converting enzyme 2 (ACE2) is increased in non-obese diabetic (NOD) mice. Because paricalcitol has been reported to protect against diabetic nephropathy, we investigated the role of paricalcitol in modulating ACE2 in these mice. In addition, renal ADAM17, a metalloprotease implied in ACE2 shedding, was assessed. NOD female and non-diabetic control mice were studied for 21 days after diabetes onset and divided into various treatment groups. Diabetic animals received either vehicle; 0.4 or 0.8 g/kg paricalcitol, aliskiren, or a combination of paricalcitol and aliskiren. We then studied the effect of paricalcitol on ACE2 expression in proximal tubular epithelial cells. Paricalcitol alone or in combination with aliskiren resulted in significantly reduced circulating ACE2 activity in NOD mice but there were no changes in urinary albumin excretion. Serum renin activity was significantly decreased in mice that received aliskiren but no effect was found when paricalcitol was used alone. Renal content of ADAM17 was significantly decreased in animals that received a high dose of paricalcitol. Renal and circulating oxidative stress (quantified by plasma H 2O2 levels and immunolocalization of nitrotyrosine) were reduced in high-dose paricalcitol-treated mice compared with non-treated diabetic mice. In culture, paricalcitol incubation resulted in a significant increase in ACE2 expression compared with nontreated cells. In NOD mice with type 1 diabetes, paricalcitol modulates ACE2 activity, ADAM17, and oxidative stress renal content independently from the glycemic profile and urinary albumin excretion. In tubular cells, paricalcitol may modulate ACE2 by blocking its shedding. In the early stage of diabetic nephropathy, paricalcitol treatment counterbalances the effect of diabetes on circulating ACE2 activity. Our results suggest that additional use of paricalcitol may be beneficial in treating patients with diabetes under standard therapeutic strategies. diabetic nephropathy; renin-angiotensin system; angiotensin-converting enzyme 2; animal model DIABETIC NEPHROPATHY IS THE leading cause of end-stage renal disease in the developed world (34). Previous studies have suggested that the renin-angiotensin system (RAS) is a major mediator of progressive renal injury in diabetic nephropathy. Drugs that target the RAS, including angiotensin-converting enzyme inhibitors and ANG II type 1 receptor blockers, have been shown to reduce the progression of glomerulosclerosis, tubulointerstitial fibrosis, and proteinuria (1, 4, 6, 21, 31). The systemic components of the RAS are altered in diabetes mellitus (32) and the intrarenal RAS is thought to play the major damaging role (25). The angiotensin-converting enzyme 2 (ACE2) has been identified in humans and differs from angiotensin-converting enzyme (ACE) in that it preferentially removes carboxy-terminal hydrophobic or basic amino acids (5, 12). Whereas ACE forms ANG II from ANG I, ACE2 is a major route of ANG II metabolism to ANG 1-7 (5, 39). ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.