Hereby we report on a novel approach in the study of multiple myeloma (MM), namely, differential scanning calorimetry (DSC) combined with serum protein electrophoresis. Distinct thermodynamic signatures describe the DSC thermograms of MM blood sera, in contrast to the unique profile found for healthy individuals. The thermal behavior of MM sera reflects a complex interplay between the serum concentration and isotype of the M protein and of albumin, and modified ligand- and/or protein-protein interactions, resulting in stabilization of globulins and at least a fraction of albumin. In all MM cases the 85 °C, transferrin-assigned transition is missing. A distinct feature of IgG isotype (κ and λ) DSC profiles only is the presence of a transition at 82 °C. A DSC-based classification of MM depicts two sets of melting patterns (MMt2 and MMt3 with two or three successive thermal transitions), and subsets within each set (MMt2(i) or MMt3(i), the subscript i = 1, 2 or 3 denotes the main transition being one of the three transitions). The results demonstrate the potential of DSC to monitor MM-related modifications of the serum proteome, even at low M protein concentrations, Bence Jones and importantly nonsecretory multiple myeloma cases, and prove DSC as a versatile tool for oncohematology.
The present work provides a thermodynamic description of blood serum from patients diagnosed with Bence Jones myeloma (BJMM) and nonsecretory myeloma (NSMM) by means of differential scanning calorimetry (DSC), serum protein electrophoresis, and free light chain assay. Specific alterations in the thermodynamic behavior of both BJMM and NSMM proteome have been revealed. On the basis of the transition temperature of the main transition in the calorimetric profiles and the shape similarity criterion, we defined BJMM and NSMM sets/subsets of thermograms with very similar thermodynamic features. We show that some of the BJMM and NSMM subsets correlate with previously defined secretory myeloma subsets (Todinova et al. Anal. Chem. 2011, 83, 7992). The established analogies strongly suggest that common molecular markers contribute to the calorimetric profiles of the different, secretory and nonsecretory, myeloma types; our data show robust evidence that these are ligands stabilizing the major serum proteins. We demonstrate that the DSC approach might be highly beneficial, especially for NSMM patients, since the characteristic modifications in the DSC profiles might serve as calorimetric markers when no monoclonal proteins can be detected in the bloodstream and the diagnosis heavily relies on invasive methods.
The blood proteome has been studied extensively for identification of novel reliable disease biomarkers. In recent years, differential scanning calorimetry has emerged as a new tool for characterization of the thermodynamic properties of the major serum/plasma proteins and for the establishment of calorimetric markers for a variety of diseases. Here we applied calorimetry to monitor the effect of treatment of patients diagnosed with multiple myeloma and Waldenström's macroglobulinemia on the calorimetric profiles of patients' blood sera. The parameters derived from the calorimetric profiles were compared with the primary serum biomarkers, monoclonal immunoglobulin (M protein) concentration, and κ/λ free light chain ratio. For the secretory cases, the calorimetric parameters thermogram's shape similarity and weighted average center strongly depended on the M protein level but had lower sensitivity and specificity. By contrast, for non-secretory cases, the calorimetric parameters did not depend on the κ/λ free light chains ratio and exhibited significantly higher sensitivity and specificity than M protein levels. A combination of the immunological and calorimetric tests was found to greatly improve the sensitivity and specificity of the clinical status evaluation. The pronounced differences in blood sera thermograms before and during monitoring reflected the individual patients' response to treatment received and showed maintenance of heterogeneity during the disease course.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.