TrkB is a tyrosine kinase receptor that is activated upon binding to brain-derived neurotrophic factor (BDNF). To date, the search for low-molecular-weight molecules mimicking BDNF’s action has been unsuccessful. Several molecules exerting antidepressive effects in vivo, such as 7,8-DHF, have been suggested to be TrkB agonists. However, more recent publications question this hypothesis. In this study, we developed a set of experimental procedures including the evaluation of direct interactions, dimerization, downstream signaling, and cytoprotection in parallel with physicochemical and ADME methods to verify the pharmacology of 7,8-DHF and other potential reference compounds, and perform screening for novel TrkB agonists. 7,8 DHF bound to TrkB with Kd = 1.3 μM; however, we were not able to observe any other activity against the TrkB receptor in SN56 T48 and differentiated SH-SY5Y cell lines. Moreover, the pharmacokinetic and pharmacodynamic effects of 7,8-DHF at doses of 1 and 50 mg/kg were examined in mice after i.v and oral administration, respectively. The poor pharmacokinetic properties and lack of observed activation of TrkB-dependent signaling in the brain confirmed that 7,8-DHF is not a relevant tool for studying TrkB activation in vivo. The binding profile for 133 molecular targets revealed a significant lack of selectivity of 7,8-DHF, suggesting a distinct functional profile independent of interaction with TrkB. Additionally, a compound library was screened in search of novel low-molecular-weight orthosteric TrkB agonists; however, we were not able to identify reliable drug candidates. Our results suggest that published reference compounds including 7,8-DHF do not activate TrkB, consistent with canonical dogma, which indicates that the reported pharmacological activity of these compounds should be interpreted carefully in a broad functional context.
Phosphoinositide 3-kinase (PI3K) is the family of lipid kinases participating in vital cellular processes such as cell proliferation, growth, migration, or cytokines production. Due to the high expression of these proteins in many human cells and their involvement in metabolism regulation, normal embryogenesis, or maintaining glucose homeostasis, the inhibition of PI3K (especially the first class which contains four subunits: α, β, γ, δ) is considered to be a promising therapeutic strategy for the treatment of inflammatory and autoimmune diseases such as systemic lupus erythematosus (SLE) or multiple sclerosis. In this work, we synthesized a library of benzimidazole derivatives of pyrazolo[1,5-a]pyrimidine representing a collection of new, potent, active, and selective inhibitors of PI3Kδ, displaying IC50 values ranging from 1.892 to 0.018 μM. Among all compounds obtained, CPL302415 (6) showed the highest activity (IC50 value of 18 nM for PI3Kδ), good selectivity (for PI3Kδ relative to other PI3K isoforms: PI3Kα/δ = 79; PI3Kβ/δ = 1415; PI3Kγ/δ = 939), and promising physicochemical properties. As a lead compound synthesized on a relatively large scale, this structure is considered a potential future candidate for clinical trials in SLE treatment.
DoE study of the aerobic flow Pd-catalyzed oxidation of an alcohol to an aldehyde in the synthesis of PI3Kδ inhibitor. The evaluation of green metrics show that the process is sustainable in comparison with two already known stoichiometric methods.
Background: Craniosynostosis (CS) represents a highly heterogeneous genetic condition whose genetic background has not been yet revealed. The abnormality occurs either in isolated form or syndromic, as an element of hundreds of different inborn syndromes. Consequently, CS may often represent a challenging diagnostic issue.Methods: We investigated a three-tiered approach (karyotyping, Sanger sequencing, followed by custom gene panel/chromosomal microarray analysis, and exome sequencing), coupled with prioritization of variants based on dysmorphological assessment and description in terms of human phenotype ontology. In addition, we have also performed a statistical analysis of the obtained clinical data using the nonparametric test χ2.Results: We achieved a 43% diagnostic success rate and have demonstrated the complexity of mutations’ type harbored by the patients, which were either chromosomal aberrations, copy number variations, or point mutations. The majority of pathogenic variants were found in the well-known CS genes, however, variants found in genes associated with chromatinopathies or RASopathies are of particular interest.Conclusion: We have critically summarized and then optimised a cost-effective diagnostic algorithm, which may be helpful in a daily diagnostic routine and future clinical research of various CS types. Moreover, we have pinpointed the possible underestimated co-occurrence of CS and intellectual disability, suggesting it may be overlooked when intellectual disability constitutes a primary clinical complaint. On the other hand, in any case of already detected syndromic CS and intellectual disability, the possible occurrence of clinical features suggestive for chromatinopathies or RASopathies should also be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.