Electrical capacitance tomography is an innovative method for visualization of industrial processes. One of its main advantages is it’s high time resolution that allows to the usage of ECT in systems with high volatility. In recent years there has been significant development of electrical capacitance tomography 3D, which however, has significantly reduced industrial it’s applications due to the complicated process of image reconstruction. The authors propose the use of multi-node, multi-GPU system to accelerate the process of image reconstruction in ECT 3D.
Yarn hairiness is one of the key parameters influencing fabric quality. In this paper image processing and analysis algorithms developed for an automatic determination of yarn hairiness are presented. The main steps of the proposed algorithms are as follows: image preprocessing, yarn core extraction using graph cut method, yarn segmentation using high pass filtering based method and fibres extraction. The developed image analysis algorithms quantify yarn hairiness by means of the two proposed measures such as hair area index and hair length index, which are compared to the USTER hairiness index-the popular hairiness measure, used nowadays in textile science, laboratories and industry. The detailed description of the proposed approach is given. The developed method is verified experimentally for two distinctly different yarns, produced by the use of different spinning methods, different fibres types and characterized by totally different hairiness. The proposed algorithms are compared with computer methods previously used for yarn properties assessment. Statistical parameters of the hair length index (mean absolute deviation, standard deviation and coefficient of variation) are calculated. Finally, the obtained results are analyzed and discussed. The proposed approach of yarn hairiness measurement is universal and the presented algorithms can be successfully applied in different vision systems for yarn quantitative analysis.
Abstract:A new approach to solve the inverse problem in electrical capacitance tomography is presented. The proposed method is based on an artificial neural network to estimate three different parameters of a circular object present inside a pipeline, i.e. radius and 2D position coordinates. This information allows the estimation of the distribution of material inside a pipe and determination of the characteristic parameters of a range of flows, which are characterised by a circular objects emerging within a cross section such as funnel flow in a silo gravitational discharging process. The main advantages of the proposed approach are explicitly: the desired characteristic flow parameters are estimated directly from the measured capacitances and rapidity, which in turn is crucial for online flow monitoring. In a classic approach in order to obtain these parameters in the first step the image is reconstructed and then the parameters are estimated with the use of image processing methods. The obtained results showed significant reduction of computations time in comparison to the iterative LBP or Levenberg-Marquard algorithms.
The article describes the algorithm of the edge detection in the computer application of the assessment of yarn quality. The proposed algorithm and the measurement method allows the real setting of the length and number of the protruding fibres. That solution introduces a new quality to the measurement of yarn hairiness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.